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ABSTRACT OF THE DISSERTATION 

Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons 

by 

Manouela Vesselinova Valtcheva 

Doctor of Philosophy in Biology and Biomedical Sciences 

Neurosciences 

Washington University in St. Louis, 2018 

Professor Robert W. Gereau, IV, Chair 

 

Itch is a distinct sensation that arises from the activation of small-diameter pruriceptive 

nerve fibers innervating the skin. Recent strides in the field have identified several histamine-

dependent and -independent pruriceptive pathways and receptors that contribute to acute and 

chronic itch. The work presented in this thesis further investigates the molecular mechanisms 

involved in the signaling, development, and sensitization of itch in mouse and human. Most 

pruritogen receptors are Gq-Protein Coupled Receptors (GqPCR), which canonically activate 

protein kinase C (PKC); however, little is known about whether specific PKC isoforms regulate 

itch. The first study in this thesis demonstrates that the isoform PKCδ contributes to histamine-

induced scratching, but not histamine-independent itch. Our studies show that PKCδ is expressed 

in dorsal root ganglia (DRG), where it mediates sensory neuron responses to histamine.  

 To investigate the mechanisms behind a common form of chronic pruritus, the second 

study in this thesis applied a mouse model of dry skin itch to test changes in sensory neuron 

structure and function. We found that dry skin was marked by a significant increase in epidermal 

nerve fiber innervation independent of scratching. Furthermore, dry skin was associated with a 

selective increase in non-peptidergic, Ret-positive fibers and a functional expansion of the 

proportion of chloroquine-sensitive neurons. Epidermal hyperinnervation and increased growth 

factor levels in the skin of patients with pruritic skin diseases suggest a potential role for 
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neurotrophic factors (NTFs) in itch. In our third study, we tested the hypothesis that NTF signaling 

modulates pruritogen-evoked itch. Pretreatment with nerve growth factor (NGF) selectively 

potentiated histamine-induced scratching and increased the proportion of histamine-responsive 

sensory neurons. Artemin pretreatment, on the other hand, potentiated scratching induced by 

chloroquine, and increased the proportion of chloroquine-responsive neurons. Interestingly, 

aberrations in endogenous TrkA-NGF signaling significantly impacted normal pain sensation, but 

did not play a role in histamine- and chloroquine-induced itch.  

In the final study of this thesis, we developed a protocol to surgically extract human DRG 

from organ donors and culture dissociated human primary sensory neurons. Using this approach, 

we performed functional studies to characterize the pruritogen- and algogen- responsive sensory 

neuron subpopulations in humans. We found that NGF and artemin pretreatment did not change 

histamine and chloroquine responses in vitro, indicating a potential functional difference between 

mouse and human sensory neurons.  
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Chapter 1 

Introduction 
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The clinical burden of itch 

Itch, or pruritus, is a sensation that arises from small diameter nerve fibers innervating the 

skin and mucosa [1]. Normally, itch is an unpleasant sensory and emotional experience that 

evokes the desire to scratch, thus providing the necessary drive to avoid actual or potential skin 

damage. But if it becomes pathological, itch can lead to severe skin injury and emotional distress. 

Chronic pruritus, defined as itch that lasts longer than 6 weeks, affects more than 15% of the 

world’s population and can lead to sleep disturbances, severe anxiety, self-mutilation, and 

impaired overall quality of life that may be comparable to chronic pain conditions [2-4]. Major 

causes of chronic pruritus include dermatological diseases such as atopic dermatitis and 

psoriasis, where itch is reported by more than 70% of patients [4-7]. Neuropathic causes of 

chronic pruritus include conditions such as post-herpetic neuralgia and notalgia paresthetica [8]. 

Systemic diseases such as HIV, uremia due to kidney failure, cholestasis due to liver failure, and 

lymphomas are also associated with a high prevalence of itch [4, 9, 10]. Drug-induced pruritus 

presents as a side effect of the anti-malarial drug chloroquine, and more commonly the epidural 

application of opioids [11-13]. Psychogenic pruritus is another cause of chronic itch, but remains 

poorly characterized in the general and psychiatric populations [8].  

Recent advances in basic and clinical research have begun to uncover some of the 

molecular mechanisms underlying pathological itch, though much remains unclear, and the 

current treatment options for patients with chronic pruritus are limited in number and efficacy [3, 

14]. First-line treatment often consists of topical remedies such as emollients, topical anesthetics, 

or coolants, and over-the-counter antihistamines, although clinical data on their efficacy is limited. 

Itch secondary to skin disorders is often associated with substantial skin inflammation and 

infiltration by immune cells, and can respond to immunomodulatory treatments including 

corticosteroids and biologics such as TNF-alpha or interleukin blockers [3]. Neuropathic and 

systemic itch may respond to neuro-modulatory medications such as gabapentin and pregabalin, 

selective serotonin-reuptake inhibitors (SSRIs), or mu-opioid receptor antagonists. However, 
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uremic and cholestatic pruritus respond best to resolution of the systemic insult by kidney or liver 

transplant. Ultimately, there is no magic bullet for the treatment of chronic pruritus. Many of the 

available therapies provide only limited relief and are associated with significant side effects, 

further underlining the importance of research to expand the current understanding of pruriceptor 

physiology and identify novel potential treatment targets.  

 

The neurobiology of itch 

 Primary sensory nerve fibers can be broadly categorized into three groups: fast-

conducting myelinated Aβ fibers, thinly-myelinated Aδ fibers, and slow-conducting unmyelinated 

C fibers. Pruriceptors, much like nociceptors, consist of a subpopulation of small diameter C-fibers 

and some Aδ fibers that innervate the epidermis and upper part of the dermis [1, 15, 16]. 

Microneurography studies in humans have been particularly useful for identifying subtypes of itch-

sensitive fibers as they allow researchers to directly correlate sensory fiber activation with the 

reported perceptions of itch and pain by human subjects in real time. Early studies by Handwerker 

and Schmelz discovered that superficial skin application of the well-known pruritogen histamine 

activated a population of C-mechano-insensitive fibers, as well as a population of C-mechano-

heat sensitive fibers [17-19]. These histamine-sensitive fibers responded to other inflammatory 

compounds known to sensitize nociceptors, including prostaglandin-E2 and serotonin, and most 

were also responsive to capsaicin [19]. While histamine plays a key role in allergic and wheal-

and-flare reactions, many forms of clinically-relevant itch appear to work via histamine-

independent mechanisms. Microneurography studies using the spicules of cowhage (mucuna 

pruriens) have demonstrated another distinct subset of C-mechano-sensitive nociceptive fibers 

that are activated to produce histamine-independent pruritus [20, 21].  

In the skin, pruriceptive signals are transduced at the peripheral terminals of sensory 

neurons whose cell bodies are located within dorsal root ganglia (DRG) or trigeminal ganglia (TG). 

Information is then relayed via central projections which synapse onto cells in lamina I and II of 



www.manaraa.com

4 
 

the spinal cord dorsal horn or spinal trigeminal nucleus in the brain stem, where peptide signaling 

through the gastrin-related peptide receptors (GRPR) and B natriuretic peptide (BNP) receptor 

NPRA play a key role [1, 22-24]. Pruriceptive information is then relayed contralaterally via distinct 

subsets of spinothalamic tract neurons that project to nuclei within the thalamus, and 

subsequently to higher cortical structures [25-28].  Although the itch neuraxis shares the 

neuroanatomical structure of pain processing, the mechanisms behind the transmission of these 

two distinct sensations are still under investigation.   

 

Itch receptors at the primary afferents 

Histamine is perhaps the most well-known and widely-studied pruritogen, but also plays 

prominent physiological roles in sleep-wake cycles, vasodilation, gastric acid secretion, and 

immune cell function. Histamine receptors are G protein-coupled receptors that can be classified 

into four subtypes (H1-4) and can be found throughout the nervous system and many non-

neuronal tissues. H1R is the main histamine receptor expressed on primary afferents, but can 

also be found in neurons in the central nervous system (CNS), smooth muscle cells, and 

endothelial cells [29-31]. H2R is expressed in many cell types, including gastric parietal cells 

where it is a key mediator of gastric acid release. H3R couples mainly to Gαi/o and acts as an 

autoreceptor throughout the nervous system [30]. H4R is also coupled to Gαi/o and has a major 

role in regulating immune cell function, but whether it has a role in the nervous system remains 

under investigation [32, 33]. Studies using highly selective pharmacological antagonists have 

demonstrated that H1R is the main receptor responsible for itch sensation and axon reflex 

neurogenic vasodilation that results in the wheal and flare induced by histamine skin prick [34, 

35]. Although H4R has not been investigated as extensively in humans, preclinical studies 

demonstrate that H4R antagonists were also able to reduce histamine-induced scratching in mice 

[3, 36-42]. Functional studies of sensory neurons utilizing ratiometric fluorescent calcium 

indicators demonstrate that histamine activates 10-15% of rodent DRG neurons [43-45].  
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Recent studies have identified several histamine-independent itch pathways that signal 

through receptors in the mas-related G protein receptor (MRGPR) family. This is a diverse family 

of receptors, consisting of the conserved subfamilies D to G, and several subfamilies found only 

in rodents (A, B, C, and H) or primates (X). Initial studies found that most MRGPR subtypes are 

expressed almost exclusively in a small subset of sensory neurons that bind the plant lectin 

isolectin B4 (IB4) [46]. A key study using Mrgpr cluster knock-out mice, which lacked most MrgprA 

and MrgprC genes, found that despite normal pain sensation, itch responses to chloroquine were 

greatly reduced. Chloroquine is an anti-malarial drug that induces robust itch in mice and can 

induce itch in humans of African descent [13]. Experiments in heterologous cells found that 

chloroquine asserts its effects by activating the MrgprA3 receptor [47]. Chloroquine-responsive 

DRG neurons were found to comprise a very small subset of sensory neurons (approximately 

5%), and also responded to histamine and the transient receptor potential (TRP) channel V1 

agonist capsaicin. The same group also found that MrgprC11 is a receptor expressed in a subset 

of the MrgprA3-positive cells and is activated by the peptides SLIGRL and bovine adrenal medulla 

8-22 pepetide (BAM8-22) to induce itch in rodents [48]. 

As mentioned previously, MRGPRX subfamily receptors are found exclusively in primates 

and in humans they are mostly restricted to DRG and TG tissues. Studies using heterologous 

systems demonstrate that MRGPRX1 can be activated by the peptides BAM8-22 and BAM1-22 

[49, 50].  MRGPRX1 can also be activated by chloroquine, though at a much higher EC50 [47]. 

BAM8-22 injection induced itch along with a stinging sensation in human volunteers, supporting 

a role for MRGPRX1 in the signaling of itch in humans [51]. While MRGPRX1 is not a true human 

ortholog of MrgprC11 or MrgprA3, it may play a key role in the signaling of non-histaminergic itch 

in humans. MRGPRX2 RNA has been identified in both DRG and mast cells, though its potential 

role in itch remains unknown [52-55]. No ligands have been described yet for MRGPRX3 and 4 

subtypes, but a study overexpressing MRGPRX3 under the β-actin promoter in rat found several 

skin and eye abnormalities [56, 57]. 
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MrgprD is another pruritogen receptor subtype that is conserved in rodents and primates, 

and is found specifically in non-peptidergic C-fiber nociceptors that synapse onto lamina II 

neurons of the spinal cord dorsal horn [58]. A subset of MrgprD-positive neurons can be activated 

by β-alanine, an amino acid commonly found in muscle building supplements, to induce itch in 

both mice and humans [59]. Some MrgprD-positive neurons are also heat- and mechano-

sensitive, but the complexities of this subpopulation are not yet well characterized [60-62]. In 

addition to the histamine and Mrgpr family receptors, various other itch receptors have been 

discovered, including proteinase-activated receptors (e.g. PAR2), toll-like receptors (TLR7), 

interleukin receptors (IL-31), and thymic stromal lymphopoetin receptor (TSLPR) [63]. 

 The expression pattern of pruritogen receptors identifies at least three functionally distinct 

subtypes of pruriceptive fibers (Fig. 1) [64-66]. Calcium imaging studies have identified a 

histamine-responsive subgroup (Fig.1A) and a β-alanine-responsive group (Fig. 1B), representing 

two distinct subpopulations that do not respond to other pruritogens [43, 47, 59, 67-69]. The third 

pruriceptor subtype is a chloroquine-responsive group, representing only 5-10% of sensory 

neurons. This group includes all SLIGRL/BAM8-22 responsive neurons. In addition, more than 

half of all chloroquine-sensitive neurons also respond to histamine (Fig. 1C). Interestingly, 

 
Figure 1. Subtypes of pruriceptive fibers. A. Histamine-responsive subset of 
pruriceptors is functionally linked to TRPV1. B. β-alanine-responsive cells are a 
distinct subset of MrgprD+ non-peptidergic neurons. C. MrgprA3-expressing 
neurons are both TrkA/Ret+ and represent a subset of pruriceptors that can 
respond to a number of pruritogens.  
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ablation of MrgprA3-positive neurons had no effect on pain behavior, but caused profound deficits 

in scratching induced by chloroquine, SLIGRL, BAM8-22, and in models of dry skin and allergic 

contact dermatitis [70]. Histamine-induced scratching was reduced to a lesser extent, likely due 

to the remaining histamine-specific subpopulation (Fig 1A). These studies suggest that the 

MrgprA3-positive population of chloroquine-responsive neurons may be particularly tuned for 

sensing itch.  

 

Intracellular mediators of itch 

The majority of recently identified pruritogen receptors are Gq protein-coupled receptors 

(GqPCRs), which exert their physiological effects via protein kinase C (PKC) activation and 

release of intracellular calcium stores [63, 64, 71]. The specific signaling cascades immediately 

downstream of pruritogen receptor activation remain less clear. Sensory neuron activation via 

H1R appears to be dependent on PLCβ3, as demonstrated by the findings that PLCβ3 knock-out 

mice scratch less when injected with histamine and almost all DRG calcium responses to 

histamine are ablated [43]. However, this study also found that over 85% of IB4-positive neurons 

and more than 30% of peptidergic neurons expressed PLCβ3, posing the question of what 

mechanisms confer specificity to histaminergic signaling.  

The canonical PLC pathway generates inositol triphosphate (IP3) and diacylglycerol 

(DAG), which act to release intracellular calcium stores and activate downstream targets, 

respectively. Gq protein-coupled receptors induce PKC activation via the generation of DAG and 

release of intracellular calcium stores [72]. Several PKC isoforms are expressed in sensory 

neurons [73-75] and are known to directly modulate ion channels, pointing to one possible mode 

of regulation of itch signaling [75-77]. The novel PKC subtype PKCδ depends on DAG for 

activation and is found in sensory neurons [72, 73, 78, 79]. PKCδ does not play an important role 

in acute pain behavior but was demonstrated to be involved in CFA-induced thermal hyperalgesia 

- a TRPV1-dependent process [80]. Furthermore, studies of histamine-induced signaling in 
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human aortic endothelial cells (HAECs) and HeLa cells (all of which express H1R endogenously) 

demonstrate that PKCδ is phosphorylated in response to histamine [81, 82]. PKCδ also appears 

to be important for histamine-induced H1R mRNA up-regulation and activation of ERK1/2 and 

p38 [81, 82].  In chapter 2, we investigate whether PKCδ plays a role in the signaling of 

histaminergic and histamine-independent itch.  

Several studies indicate that pruritogen receptors are functionally linked to specific 

transient receptor potential (TRP) channels, a family of non-selective cation channels that can be 

activated by diverse environmental and physiological stimuli [83-87].  Early microneurography 

studies in humans demonstrate that most histamine-sensitive fibers respond to heat, suggesting 

the expression of the heat-sensitive channel TRPV1 [17, 19]. In vitro animal studies confirmed 

this, demonstrating that 30-60% of histamine-responsive sensory neurons can also be activated 

by the TRPV1 agonist capsaicin [47, 68, 86, 88]. TRPV1 deletion and pharmacological inhibition 

significantly reduced histamine-evoked scratching and sensory neuron responses to histamine, 

indicating a functional link between histamine receptor and TRPV1 [88, 89]. TRPV1 is also 

expressed in other subsets of pruriceptors, including MrgprA3- and MrgprC11-positive neurons, 

but it does not appear to play a functional role in histamine-independent itch [47, 48, 68, 86, 89, 

90]. 

Several findings indicate that histamine-independent itch is instead mediated by TRPA1, 

a promiscuous TRP channel activated by a number of environmental irritants. The TRPA1 agonist 

mustard oil (MO) activates a large proportion of CQ- and BAM8-22-responsive neurons [68, 86, 

90]. Both genetic deletion and pharmacological inhibition of TRPA1 significantly reduced 

scratching responses and neuronal activation by chloroquine and BAM8-22 [90, 91]. Interestingly, 

it appears that the Mrgpr receptors engage different mechanisms to activate TRPA1, where 

MrgprA3 signals via Gβγ, while MrgprC11 signals through PLC [90]. TRPA1 also mediates chronic 

itch and oxidative stress-induced itch, further demonstrating its role in histamine-independent 

mechanisms of pruritus [90, 92, 93].  
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Differentiating between itch and pain 

Itch and pain are two distinct sensory experiences. The prototypical behavioral response 

that inhibits itch is a noxious stimulus in the form of a scratch. Conversely, inhibition of pain by 

epidural anesthetics is frequently associated with itch. The polymodal nature of pruriceptive 

neurons has given rise to two major competing theories regarding the physiological basis of itch. 

The first, known as “the intensity theory”, postulates that itch arises from the same population of 

neurons that signal pain. It hypothesizes that stimulus intensity determines whether a stimulus is 

perceived as “itchy” or painful, with the expectation that a low-intensity noxious stimulus produces 

itch. The alternative, “labeled-line theory” proposes that itch- and pain-sensitive pathways are 

anatomically separate and specialized for transducing only one sensation.  

Recent studies of the molecular mechanisms that mediate itch and pain have uncovered 

evidence to support the labeled-line theory. Even though pruriceptors resemble nociceptors in 

their ability to respond to painful stimuli like heat and chemical irritants, a recent finding 

demonstrates that selective activation of pruriceptive neurons results in itch, not pain. In an 

elegantly designed study, Han et al. used TRPV1 global knock-out mice engineered to express 

TRPV1 solely in the MrgprA3-positive subset of neurons.  In these animals, cheek application of 

the TRPV1 agonist capsaicin induced itch-specific scratching instead of the nociceptive wiping 

response induced by capsaicin in wild type controls [70]. These results demonstrate that the 

selective activation of MrgprA3-positive neurons specifically transduces itch and further support 

the idea that pruriceptors are a distinct subset of sensory neurons specialized for sensing itch. 

Even so, psychophysical studies in humans have demonstrated that the sensation experienced 

after application of the pruritogens histamine, BAM8-22, or β-alanine may not be a true pure itch, 

as participants report it is frequently accompanied by prickling or burning undertones, suggesting 

more complex underlying mechanisms.   
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Development and sensitization of pruriceptors 

Primary afferents are pseudounipolar neurons derived from neural crest cells that migrate 

out of the neural tube and differentiate into a heterogeneous pool of proprioceptors, 

mechanoreceptors, thermoreceptors, nociceptors, and pruriceptors [94, 95]. The survival and 

phenotype specification of these functionally distinct groups is regulated by transcription factors 

and neurotrophic factors. Nerve growth factor (NGF) signals via the receptor tyrosine kinase A 

(TrkA) to support the survival of small diameter sensory neurons during embryogenesis  [96-103]. 

Those neurons which retain TrkA expression into adulthood become the peptidergic subset 

known for their expression of calcitonin gene-related peptide (CGRP) and substance P [100, 104, 

105]. However, about half of small diameter neurons downregulate TrkA in the early post-natal 

period and begin to express the receptor tyrosine kinase Ret [104, 106]. This subset is dependent 

on the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) GDNF, neurturin 

(NRTN), and artemin (ARTN). Ret activation by the GFLs requires a cell surface co-receptor 

known as GDNF Family Receptor α (GFRα). Analysis of GFL and co-receptor null mice 

demonstrates highly restricted physiological pairing of ligand and high affinity co-receptors in vivo: 

GFRα1/GDNF, GFRα2/NRTN, and GFRα3/ARTN [107, 108]. The small diameter Ret-positive 

neurons constitute the non-peptidergic subset of nociceptors, which are largely identified by their 

ability to bind the plant lectin isolectin B4 (IB4). Additionally, neurotrophic factor signaling via TrkA 

and Ret is necessary for the establishment of peripheral target innervation during development 

and the maintenance of innervation throughout adulthood [101, 109, 110]. The expression of TrkA 

and Ret determine neuronal dependence on different neurotrophic factors, contributing to the 

development and maintenance of anatomically and functionally distinct populations of sensory 

neurons.  

Sensory nerve fibers in the skin are in close proximity to keratinocytes, dermal fibroblasts, 

and immune cells, which can release pruritogens, various pro-inflammatory mediators, and 

neurotrophic factors (NTFs) [1, 111-119]. Studies have identified multiple mechanisms by which 
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inflammation and growth factors directly activate and sensitize nociceptors in the context of pain. 

NGF and the GFLs have been shown to directly sensitize and upregulate the expression of 

TRPV1 and TRPA1 [120-125]. Overexpression of select growth factors in keratinocytes results in 

epidermal hyperinnervation, sensory neuron cell body hypertrophy, and enhanced expression of 

TRP channels, which contributes to a state of hyperalgesia [126-130]. In addition, neurotrophic 

factors regulate the expression and function of sodium channels, which directly contribute to the 

regulation of nociceptor excitability [131-135]. In conclusion, these findings indicate a clear role 

for neurotrophic factors in the sensitization of pain, but whether and how they directly affect 

pruriceptors remains unknown. 

 Several key observations suggest that neurotrophic factors could contribute to chronic 

itch. First, epidermal hyperplasia and inflammatory cell infiltration are hallmarks of many pruritic 

skin diseases, serving as a source of increased neurotrophic factor levels. Studies of atopic 

dermatitis and psoriasis have shown that the severity of itching correlates with increased serum 

levels of NGF [136-139]. Lesional skin from atopic dermatitis patients is marked by increased 

levels of NGF in the skin and increased TrkA in epidermal nerve fibers [137-140]. Another recent 

study found that artemin is also increased in the skin of patients with atopic dermatitis [141]. 

Epidermal hyperinnervation of lesional skin is another common feature of pruritic skin diseases 

that suggests neurotrophic factor involvement [140, 142, 143]. Co-culturing human keratinocytes 

from patients with atopic dermatitis with porcine sensory neurons resulted in increased local NGF 

release and greater axon growth when compared to a co-culture using healthy human 

keratinocytes [144]. NGF and TrkA inhibition in a mouse model of atopic dermatitis reduced both 

scratching and epidermal fiber density [145, 146]. Human TrkA deficiency results in congenital 

insensitivity to both pain and itch, confirming that NGF-TrkA signaling plays a key role in the 

development and maintenance of pruriceptors [147]. 

Acutely, intradermal injection of NGF in human subjects enhanced itch produced by the 

non-histaminergic pruritogen cowhage [148]. In a Phase II clinical study investigating artemin as 
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a potential treatment for unilateral sciatica, the most commonly reported adverse reactions to 

intravenous or subcutaneous artemin administration were changes in temperature perception and 

pruritus [149, 150]. In animal studies, artemin treatment induced warmth-provoked scratching 

behavior that was dependent on the expression of the artemin co-receptor GFRα3 [141]. Finally, 

neurotrophic factors can directly induce mast cell degranulation, stimulating local histamine 

release to induce itch [151-154]. These findings suggest that NTFs regulate itch, but the 

mechanisms of this modulation are poorly understood.    

Immunohistochemical characterization of pruriceptive neurons suggests a potential role 

for both NGF-TrkA and GFL-Ret signaling in the regulation of pruriceptor physiolgy. Histamine-

responsive neurons co-express TRPV1 and their activation results in the axon-reflex vasogenic 

reaction, suggesting they express peptides, likely making them TrkA-positive. On the other hand, 

Ret is expressed in both the β-alanine- and chloroquine-responsive subsets of pruriceptive 

neurons (Fig 1B-C) [58, 70]. Interestingly, the MrgprA3-positive group was also found to express 

CGRP, indicating that MrgprA3 pruriceptors represent a small subpopulation of neurons that have 

retained both peptidergic and non-peptidergic markers [70]. In chapter 4 of this manuscript, we 

investigate the role of both NGF and the GFLs GDNF, neurturin, and artemin in histamine- and 

chloroquine-evoked itch.  

 

Translational approaches to preclinical studies of itch and pain 

For decades, animal models have been the backbone of preclinical research. Studies 

using mice provide key advantages, most notably precise genetic manipulation and quick 

breeding, that allow thorough hypothesis testing in a complex biological system. As an in vitro 

model, primary cultures of dissociated rodent sensory neurons have been used to study pain, 

itch, nerve injury, regeneration, and axonal transport. Many candidate molecular targets and 

genes have been identified using this approach, yet few of these findings have directly translated 

into effective and safe clinical treatments [155-159]. Several notable failures in translation suggest 
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prominent differences in fundamental biological mechanisms between humans and rodents [160-

166]. MrgprA3 and MrgprC11 pruriceptor physiology is one important example of fundamental 

receptor differences between species. Due to divergent evolutionary mechanisms, these receptor 

families are greatly expanded in the mouse, but are not found in primates.  While the human 

MRGPRX1 receptor can be activated by the same agonists, key differences in receptor structure 

and pharmacology demonstrate that these receptors are not true orthologs [47, 48, 70, 167]. In 

addition, the functional link between mouse MrgprA3 and C11 receptors and TRPA1 may not be 

present in primates. Studies using heterologous expression models suggest that MRGPRX1 may 

actually engage TRPV1 as a downstream mechanism for cell activation [167, 168]. Thus, key 

differences in the molecular mechanisms underlying human and rodent sensory neuron 

processing demonstrate the importance of preclinical target validation in human cells [169-172].  

A major obstacle impeding the validation of basic research findings is access to human 

tissues. Human neurons are notoriously difficult to obtain and maintain in culture for use in 

experiments. That is most likely the reason why very little is currently known about the physiology 

of human pruriceptive subpopulations. In the final study in this dissertation, we describe a protocol 

we developed for the surgical extraction of human dorsal root ganglia from deceased organ 

donors. This approach has provided us with access to human tissue with a minimal post-mortem 

interval, allowing the successful culturing of human sensory neurons. In chapter 5, we 

characterize the human pruriceptive subpopulations that respond to histamine and chloroquine, 

and directly test the effects of neurotrophic factors on pruriceptor calcium responses.  

 

 

 

  



www.manaraa.com

14 
 

References 

1. Ikoma, A., et al., The neurobiology of itch. Nat Rev Neurosci, 2006. 7(7): p. 535-47. 

2. Armstrong, A.W., et al., Quality of Life and Work Productivity Impairment among Psoriasis 
Patients: Findings from the National Psoriasis Foundation Survey Data 2003-2011. PLoS 
One, 2012. 7(12): p. e52935. 

3. Yosipovitch, G. and J.D. Bernhard, Clinical practice. Chronic pruritus. N Engl J Med, 2013. 
368(17): p. 1625-34. 

4. Weisshaar, E. and F. Dalgard, Epidemiology of itch: adding to the burden of skin morbidity. 
Acta Derm Venereol, 2009. 89(4): p. 339-50. 

5. Yosipovitch, G., et al., The prevalence and clinical characteristics of pruritus among 
patients with extensive psoriasis. Br J Dermatol, 2000. 143(5): p. 969-73. 

6. Yosipovitch, G., et al., Itch characteristics in Chinese patients with atopic dermatitis using 
a new questionnaire for the assessment of pruritus. Int J Dermatol, 2002. 41(4): p. 212-6. 

7. Dawn, A., et al., Itch characteristics in atopic dermatitis: results of a web-based 
questionnaire. Br J Dermatol, 2009. 160(3): p. 642-4. 

8. Yosipovitch, G. and L.S. Samuel, Neuropathic and psychogenic itch. Dermatol Ther, 2008. 
21(1): p. 32-41. 

9. Blanes, M., et al., Pruritus in HIV-infected patients in the era of combination antiretroviral 
therapy: a study of its prevalence and causes. Int J STD AIDS, 2012. 23(4): p. 255-7. 

10. Kfoury, L.W. and M.A. Jurdi, Uremic pruritus. J Nephrol, 2012. 25(5): p. 644-52. 

11. Swegle, J.M. and C. Logemann, Management of common opioid-induced adverse effects. 
Am Fam Physician, 2006. 74(8): p. 1347-54. 

12. George, A.O., Chloroquine induced pruritus--questionnaire based epidemiological study. 
Afr J Health Sci, 2004. 11(3-4): p. 87-92. 

13. Tey, H.L. and G. Yosipovitch, Itch in ethnic populations. Acta Derm Venereol, 2010. 90(3): 
p. 227-34. 

14. Steinhoff, M., et al., Pruritus: management algorithms and experimental therapies. Semin 
Cutan Med Surg, 2011. 30(2): p. 127-37. 

15. Ringkamp, M., et al., A role for nociceptive, myelinated nerve fibers in itch sensation. J 
Neurosci, 2011. 31(42): p. 14841-9. 

16. Ikoma, A., et al., Anatomy and neurophysiology of pruritus. Semin Cutan Med Surg, 2011. 
30(2): p. 64-70. 

17. Schmelz, M., et al., Specific C-receptors for itch in human skin. J Neurosci, 1997. 17(20): 
p. 8003-8. 



www.manaraa.com

15 
 

18. Handwerker, H.O., Microneurography of pruritus. Neurosci Lett, 2010. 470(3): p. 193-6. 

19. Schmelz, M., et al., Chemical response pattern of different classes of C-nociceptors to 
pruritogens and algogens. J Neurophysiol, 2003. 89(5): p. 2441-8. 

20. Johanek, L.M., et al., Psychophysical and physiological evidence for parallel afferent 
pathways mediating the sensation of itch. J Neurosci, 2007. 27(28): p. 7490-7. 

21. Namer, B., et al., Separate peripheral pathways for pruritus in man. J Neurophysiol, 2008. 
100(4): p. 2062-9. 

22. Mishra, S.K. and M.A. Hoon, The Cells and Circuitry for Itch Responses in Mice. Science, 
2013. 340(6135): p. 968-971. 

23. Sun, Y.G., et al., Cellular basis of itch sensation. Science, 2009. 325(5947): p. 1531-4. 

24. Sun, Y.G. and Z.F. Chen, A gastrin-releasing peptide receptor mediates the itch sensation 
in the spinal cord. Nature, 2007. 448(7154): p. 700-3. 

25. Davidson, S. and G.J. Giesler, The multiple pathways for itch and their interactions with 
pain. Trends Neurosci, 2010. 33(12): p. 550-8. 

26. Davidson, S., et al., Pruriceptive spinothalamic tract neurons: physiological properties and 
projection targets in the primate. J Neurophysiol, 2012. 108(6): p. 1711-23. 

27. Davidson, S., et al., The itch-producing agents histamine and cowhage activate separate 
populations of primate spinothalamic tract neurons. J Neurosci, 2007. 27(37): p. 10007-
14. 

28. Papoiu, A.D., et al., A tale of two itches. Common features and notable differences in brain 
activation evoked by cowhage and histamine induced itch. Neuroimage, 2012. 59(4): p. 
3611-23. 

29. Hill, S.J., et al., International Union of Pharmacology. XIII. Classification of histamine 
receptors. Pharmacol Rev, 1997. 49(3): p. 253-78. 

30. Haas, H.L., O.A. Sergeeva, and O. Selbach, Histamine in the nervous system. Physiol 
Rev, 2008. 88(3): p. 1183-241. 

31. Panula, P., et al., International Union of Basic and Clinical Pharmacology. XCVIII. 
Histamine Receptors. Pharmacol Rev, 2015. 67(3): p. 601-55. 

32. Thurmond, R.L., The histamine H4 receptor: from orphan to the clinic. Front Pharmacol, 
2015. 6: p. 65. 

33. Oda, T., et al., Molecular cloning and characterization of a novel type of histamine receptor 
preferentially expressed in leukocytes. J Biol Chem, 2000. 275(47): p. 36781-6. 

34. Coulie, P.J., L. Ghys, and J.P. Rihoux, Inhibitory effects of orally or sublingually 
administered cetirizine on histamine-induced weals and flares and their correlation with 
cetirizine plasma concentrations. J Int Med Res, 1991. 19(2): p. 174-9. 



www.manaraa.com

16 
 

35. Levander, S., M. Stahle-Backdahl, and O. Hagermark, Peripheral antihistamine and 
central sedative effects of single and continuous oral doses of cetirizine and hydroxyzine. 
Eur J Clin Pharmacol, 1991. 41(5): p. 435-9. 

36. Bell, J.K., D.S. McQueen, and J.L. Rees, Involvement of histamine H4 and H1 receptors 
in scratching induced by histamine receptor agonists in Balb C mice. Br J Pharmacol, 
2004. 142(2): p. 374-80. 

37. Davies, M.G. and M.W. Greaves, Sensory responses of human skin to synthetic histamine 
analogues and histamine. Br J Clin Pharmacol, 1980. 9(5): p. 461-5. 

38. Dunford, P.J., et al., Histamine H4 receptor antagonists are superior to traditional 
antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol, 2007. 
119(1): p. 176-83. 

39. Ninkovic, M. and S.P. Hunt, Opiate and histamine H1 receptors are present on some 
substance P-containing dorsal root ganglion cells. Neurosci Lett, 1985. 53(1): p. 133-7. 

40. Rimmer, S.J. and M.K. Church, The pharmacology and mechanisms of action of histamine 
H1-antagonists. Clin Exp Allergy, 1990. 20 Suppl 2: p. 3-17. 

41. Strakhova, M.I., et al., Localization of histamine H4 receptors in the central nervous 
system of human and rat. Brain Res, 2009. 1250: p. 41-8. 

42. Yamaura, K., et al., Expression of histamine H4 receptor in human epidermal tissues and 
attenuation of experimental pruritus using H4 receptor antagonist. J Toxicol Sci, 2009. 
34(4): p. 427-31. 

43. Han, S.K., V. Mancino, and M.I. Simon, Phospholipase Cbeta 3 mediates the scratching 
response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron, 
2006. 52(4): p. 691-703. 

44. Nicolson, T.A., S. Bevan, and C.D. Richards, Characterisation of the calcium responses 
to histamine in capsaicin-sensitive and capsaicin-insensitive sensory neurones. 
Neuroscience, 2002. 110(2): p. 329-38. 

45. Kim, B.M., et al., Histamine-induced Ca(2+) influx via the PLA(2)/lipoxygenase/TRPV1 
pathway in rat sensory neurons. Neurosci Lett, 2004. 361(1-3): p. 159-62. 

46. Dong, X., et al., A diverse family of GPCRs expressed in specific subsets of nociceptive 
sensory neurons. Cell, 2001. 106(5): p. 619-32. 

47. Liu, Q., et al., Sensory neuron-specific GPCR Mrgprs are itch receptors mediating 
chloroquine-induced pruritus. Cell, 2009. 139(7): p. 1353-65. 

48. Liu, Q., et al., The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and 
hyperalgesia. Sci Signal, 2011. 4(181): p. ra45. 

49. Burstein, E.S., et al., Characterization of the Mas-related gene family: structural and 
functional conservation of human and rhesus MrgX receptors. Br J Pharmacol, 2006. 
147(1): p. 73-82. 



www.manaraa.com

17 
 

50. Lembo, P.M., et al., Proenkephalin A gene products activate a new family of sensory 
neuron--specific GPCRs. Nat Neurosci, 2002. 5(3): p. 201-9. 

51. Sikand, P., X. Dong, and R.H. LaMotte, BAM8-22 peptide produces itch and nociceptive 
sensations in humans independent of histamine release. J Neurosci, 2011. 31(20): p. 
7563-7. 

52. Kamohara, M., et al., Identification of MrgX2 as a human G-protein-coupled receptor for 
proadrenomedullin N-terminal peptides. Biochem Biophys Res Commun, 2005. 330(4): p. 
1146-52. 

53. Zhang, L., et al., Cloning and expression of MRG receptors in macaque, mouse, and 
human. Brain Res Mol Brain Res, 2005. 133(2): p. 187-97. 

54. Subramanian, H., et al., Mas-related gene X2 (MrgX2) is a novel G protein-coupled 
receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor 
phosphorylation, desensitization, and internalization. J Biol Chem, 2011. 286(52): p. 
44739-49. 

55. Tatemoto, K., et al., Immunoglobulin E-independent activation of mast cell is mediated by 
Mrg receptors. Biochem Biophys Res Commun, 2006. 349(4): p. 1322-8. 

56. Kaisho, Y., et al., Transgenic rats overexpressing the human MrgX3 gene show cataracts 
and an abnormal skin phenotype. Biochem Biophys Res Commun, 2005. 330(3): p. 653-
7. 

57. Bader, M., et al., MAS and its related G protein-coupled receptors, Mrgprs. Pharmacol 
Rev, 2014. 66(4): p. 1080-105. 

58. Zylka, M.J., F.L. Rice, and D.J. Anderson, Topographically distinct epidermal nociceptive 
circuits revealed by axonal tracers targeted to Mrgprd. Neuron, 2005. 45(1): p. 17-25. 

59. Liu, Q., et al., Mechanisms of itch evoked by beta-alanine. J Neurosci, 2012. 32(42): p. 
14532-7. 

60. Rau, K.K., et al., Mrgprd enhances excitability in specific populations of cutaneous murine 
polymodal nociceptors. J Neurosci, 2009. 29(26): p. 8612-9. 

61. Cavanaugh, D.J., et al., Distinct subsets of unmyelinated primary sensory fibers mediate 
behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S 
A, 2009. 106(22): p. 9075-80. 

62. Dussor, G., et al., Cutaneous sensory neurons expressing the Mrgprd receptor sense 
extracellular ATP and are putative nociceptors. J Neurophysiol, 2008. 99(4): p. 1581-9. 

63. Bautista, D.M., S.R. Wilson, and M.A. Hoon, Why we scratch an itch: the molecules, cells 
and circuits of itch. Nat Neurosci, 2014. 17(2): p. 175-82. 

64. Han, S.K. and M.I. Simon, Intracellular signaling and the origins of the sensations of itch 
and pain. Sci Signal, 2011. 4(185): p. pe38. 



www.manaraa.com

18 
 

65. Davidson, S., The Role of Neurotrophic Factors in Itch, in K99 Grant Proposal. 2013. 

66. Han, S.K., et al., Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively 
activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc Natl Acad 
Sci U S A, 2002. 99(23): p. 14740-5. 

67. Rossbach, K., et al., Histamine H1, H3 and H4 receptors are involved in pruritus. 
Neuroscience, 2011. 190: p. 89-102. 

68. Akiyama, T., et al., Cross-sensitization of histamine-independent itch in mouse primary 
sensory neurons. Neuroscience, 2012. 226: p. 305-12. 

69. Akiyama, T., M.I. Carstens, and E. Carstens, Enhanced scratching evoked by PAR-2 
agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain, 2010. 
151(2): p. 378-83. 

70. Han, L., et al., A subpopulation of nociceptors specifically linked to itch. Nat Neurosci, 
2013. 16(2): p. 174-82. 

71. Exton, J.H., Regulation of phosphoinositide phospholipases by hormones, 
neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol, 
1996. 36: p. 481-509. 

72. Steinberg, S.F., Structural basis of protein kinase C isoform function. Physiol Rev, 2008. 
88(4): p. 1341-78. 

73. Cesare, P., et al., Specific involvement of PKC-epsilon in sensitization of the neuronal 
response to painful heat. Neuron, 1999. 23(3): p. 617-24. 

74. Aley, K.O., et al., Chronic hypersensitivity for inflammatory nociceptor sensitization 
mediated by the epsilon isozyme of protein kinase C. J Neurosci, 2000. 20(12): p. 4680-
5. 

75. Velazquez, K.T., H. Mohammad, and S.M. Sweitzer, Protein kinase C in pain: involvement 
of multiple isoforms. Pharmacol Res, 2007. 55(6): p. 578-89. 

76. Bhave, G., et al., Protein kinase C phosphorylation sensitizes but does not activate the 
capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci U 
S A, 2003. 100(21): p. 12480-5. 

77. Loo, L., et al., The C-type natriuretic peptide induces thermal hyperalgesia through a 
noncanonical Gbetagamma-dependent modulation of TRPV1 channel. J Neurosci, 2012. 
32(35): p. 11942-55. 

78. Steinberg, S.F., Distinctive activation mechanisms and functions for protein kinase Cdelta. 
Biochem J, 2004. 384(Pt 3): p. 449-59. 

79. Kikkawa, U., H. Matsuzaki, and T. Yamamoto, Protein kinase C delta (PKC delta): 
activation mechanisms and functions. J Biochem, 2002. 132(6): p. 831-9. 



www.manaraa.com

19 
 

80. Zhao, C., M. Leitges, and R.W. Gereau, Isozyme-specific effects of protein kinase C in 
pain modulation. Anesthesiology, 2011. 115(6): p. 1261-70. 

81. Hao, F., et al., Histamine induces Egr-1 expression in human aortic endothelial cells via 
the H1 receptor-mediated protein kinase Cdelta-dependent ERK activation pathway. J Biol 
Chem, 2008. 283(40): p. 26928-36. 

82. Mizuguchi, H., et al., Involvement of protein kinase Cdelta/extracellular signal-regulated 
kinase/poly(ADP-ribose) polymerase-1 (PARP-1) signaling pathway in histamine-induced 
up-regulation of histamine H1 receptor gene expression in HeLa cells. J Biol Chem, 2011. 
286(35): p. 30542-51. 

83. Montell, C., The TRP superfamily of cation channels. Sci STKE, 2005. 2005(272): p. re3. 

84. Latorre, R., et al., ThermoTRP channels as modular proteins with allosteric gating. Cell 
Calcium, 2007. 42(4-5): p. 427-38. 

85. Patapoutian, A., et al., ThermoTRP channels and beyond: mechanisms of temperature 
sensation. Nat Rev Neurosci, 2003. 4(7): p. 529-39. 

86. Roberson, D.P., et al., Activity-dependent silencing reveals functionally distinct itch-
generating sensory neurons. Nat Neurosci, 2013. 16(7): p. 910-8. 

87. Stucky, C.L., et al., Roles of transient receptor potential channels in pain. Brain Res Rev, 
2009. 60(1): p. 2-23. 

88. Shim, W.S., et al., TRPV1 mediates histamine-induced itching via the activation of 
phospholipase A2 and 12-lipoxygenase. J Neurosci, 2007. 27(9): p. 2331-7. 

89. Imamachi, N., et al., TRPV1-expressing primary afferents generate behavioral responses 
to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A, 2009. 106(27): p. 
11330-5. 

90. Wilson, S.R., et al., TRPA1 is required for histamine-independent, Mas-related G protein-
coupled receptor-mediated itch. Nat Neurosci, 2011. 14(5): p. 595-602. 

91. Than, J.Y., et al., Excitation and Modulation of TRPA1, TRPV1, and TRPM8 Channel-
expressing Sensory Neurons by the Pruritogen Chloroquine. J Biol Chem, 2013. 288(18): 
p. 12818-27. 

92. Liu, T. and R.R. Ji, Oxidative stress induces itch via activation of transient receptor 
potential subtype ankyrin 1 in mice. Neurosci Bull, 2012. 28(2): p. 145-54. 

93. Liu, B., et al., TRPA1 controls inflammation and pruritogen responses in allergic contact 
dermatitis. FASEB J, 2013. 27(9): p. 3549-63. 

94. Lallemend, F. and P. Ernfors, Molecular interactions underlying the specification of 
sensory neurons. Trends Neurosci, 2012. 35(6): p. 373-81. 

95. Liu, Y. and Q. Ma, Generation of somatic sensory neuron diversity and implications on 
sensory coding. Curr Opin Neurobiol, 2011. 21(1): p. 52-60. 



www.manaraa.com

20 
 

96. Carroll, S.L., et al., Dorsal root ganglion neurons expressing trk are selectively sensitive 
to NGF deprivation in utero. Neuron, 1992. 9(4): p. 779-88. 

97. Ruit, K.G., et al., Selective dependence of mammalian dorsal root ganglion neurons on 
nerve growth factor during embryonic development. Neuron, 1992. 8(3): p. 573-87. 

98. Dyck, P.J., et al., Intradermal recombinant human nerve growth factor induces pressure 
allodynia and lowered heat-pain threshold in humans. Neurology, 1997. 48(2): p. 501-5. 

99. Mu, X., et al., Neurotrophin receptor genes are expressed in distinct patterns in developing 
dorsal root ganglia. J Neurosci, 1993. 13(9): p. 4029-41. 

100. Molliver, D.C., et al., Presence or absence of TrkA protein distinguishes subsets of small 
sensory neurons with unique cytochemical characteristics and dorsal horn projections. J 
Comp Neurol, 1995. 361(3): p. 404-16. 

101. Smeyne, R.J., et al., Severe sensory and sympathetic neuropathies in mice carrying a 
disrupted Trk/NGF receptor gene. Nature, 1994. 368(6468): p. 246-9. 

102. Crowley, C., et al., Mice lacking nerve growth factor display perinatal loss of sensory and 
sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell, 1994. 76(6): 
p. 1001-11. 

103. Diamond, J., M. Holmes, and M. Coughlin, Endogenous NGF and nerve impulses regulate 
the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci, 1992. 
12(4): p. 1454-66. 

104. Molliver, D.C. and W.D. Snider, Nerve growth factor receptor TrkA is down-regulated 
during postnatal development by a subset of dorsal root ganglion neurons. J Comp Neurol, 
1997. 381(4): p. 428-38. 

105. Luo, W., et al., A hierarchical NGF signaling cascade controls Ret-dependent and Ret-
independent events during development of nonpeptidergic DRG neurons. Neuron, 2007. 
54(5): p. 739-54. 

106. Molliver, D.C., et al., IB4-binding DRG neurons switch from NGF to GDNF dependence in 
early postnatal life. Neuron, 1997. 19(4): p. 849-61. 

107. Airaksinen, M.S. and M. Saarma, The GDNF family: signalling, biological functions and 
therapeutic value. Nat Rev Neurosci, 2002. 3(5): p. 383-94. 

108. Leitner, M.L., et al., Analysis of the retrograde transport of glial cell line-derived 
neurotrophic factor (GDNF), neurturin, and persephin suggests that in vivo signaling for 
the GDNF family is GFRalpha coreceptor-specific. J Neurosci, 1999. 19(21): p. 9322-31. 

109. Patel, T.D., et al., Development of sensory neurons in the absence of NGF/TrkA signaling 
in vivo. Neuron, 2000. 25(2): p. 345-57. 

110. Golden, J.P., et al., RET signaling is required for survival and normal function of 
nonpeptidergic nociceptors. J Neurosci, 2010. 30(11): p. 3983-94. 



www.manaraa.com

21 
 

111. Groneberg, D.A., et al., Gene expression and regulation of nerve growth factor in atopic 
dermatitis mast cells and the human mast cell line-1. J Neuroimmunol, 2005. 161(1-2): p. 
87-92. 

112. Lumpkin, E.A. and M.J. Caterina, Mechanisms of sensory transduction in the skin. Nature, 
2007. 445(7130): p. 858-65. 

113. Dou, Y.C., et al., Increased nerve growth factor and its receptors in atopic dermatitis: an 
immunohistochemical study. Arch Dermatol Res, 2006. 298(1): p. 31-7. 

114. Dillon, S.R., et al., Interleukin 31, a cytokine produced by activated T cells, induces 
dermatitis in mice. Nat Immunol, 2004. 5(7): p. 752-60. 

115. Katugampola, R., M.K. Church, and G.F. Clough, The neurogenic vasodilator response to 
endothelin-1: a study in human skin in vivo. Exp Physiol, 2000. 85(6): p. 839-46. 

116. Liang, J., T. Kawamata, and W. Ji, Molecular signaling of pruritus induced by endothelin-
1 in mice. Exp Biol Med (Maywood), 2010. 235(11): p. 1300-5. 

117. Andoh, T., et al., Involvement of leukotriene B(4) in substance P-induced itch-associated 
response in mice. J Invest Dermatol, 2001. 117(6): p. 1621-6. 

118. Fitzsimons, C., et al., Histamine production in mouse epidermal keratinocytes is regulated 
during cellular differentiation. Inflamm Res, 2001. 50 Suppl 2: p. S100-1. 

119. Kanda, N., S. Koike, and S. Watanabe, Prostaglandin E2 enhances neurotrophin-4 
production via EP3 receptor in human keratinocytes. J Pharmacol Exp Ther, 2005. 315(2): 
p. 796-804. 

120. Malin, S.A., et al., Glial cell line-derived neurotrophic factor family members sensitize 
nociceptors in vitro and produce thermal hyperalgesia in vivo. J Neurosci, 2006. 26(33): 
p. 8588-99. 

121. Donnerer, J., I. Liebmann, and R. Schicho, Differential regulation of 3-beta-hydroxysteroid 
dehydrogenase and vanilloid receptor TRPV1 mRNA in sensory neurons by capsaicin and 
NGF. Pharmacology, 2005. 73(2): p. 97-101. 

122. Zhang, X., J. Huang, and P.A. McNaughton, NGF rapidly increases membrane expression 
of TRPV1 heat-gated ion channels. EMBO J, 2005. 24(24): p. 4211-23. 

123. Xue, Q., et al., Transcription of rat TRPV1 utilizes a dual promoter system that is positively 
regulated by nerve growth factor. J Neurochem, 2007. 101(1): p. 212-22. 

124. Malin, S.A., B.M. Davis, and D.C. Molliver, Production of dissociated sensory neuron 
cultures and considerations for their use in studying neuronal function and plasticity. Nat 
Protoc, 2007. 2(1): p. 152-60. 

125. Ikeda-Miyagawa, Y., et al., Peripherally increased artemin is a key regulator of TRPA1/V1 
expression in primary afferent neurons. Mol Pain, 2015. 11(1): p. 4. 



www.manaraa.com

22 
 

126. Albers, K.M., et al., Glial Cell Line-Derived Neurotrophic Factor Expression in Skin Alters 
the Mechanical Sensitivity of Cutaneous Nociceptors. J. Neurosci., 2006. 26(11): p. 2981-
2990. 

127. Elitt, C.M., et al., Artemin overexpression in skin enhances expression of TRPV1 and 
TRPA1 in cutaneous sensory neurons and leads to behavioral sensitivity to heat and cold. 
J Neurosci, 2006. 26(33): p. 8578-87. 

128. Elitt, C.M., et al., Overexpression of artemin in the tongue increases expression of TRPV1 
and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard 
oil. Brain Res, 2008. 1230: p. 80-90. 

129. Albers, K.M., D.E. Wright, and B.M. Davis, Overexpression of nerve growth factor in 
epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J 
Neurosci, 1994. 14(3 Pt 2): p. 1422-32. 

130. Goodness, T.P., et al., Overexpression of nerve growth factor in skin increases sensory 
neuron size and modulates Trk receptor expression. Eur J Neurosci, 1997. 9(8): p. 1574-
85. 

131. Dib-Hajj, S.D., et al., Rescue of alpha-SNS sodium channel expression in small dorsal 
root ganglion neurons after axotomy by nerve growth factor in vivo. J Neurophysiol, 1998. 
79(5): p. 2668-76. 

132. Leffler, A., et al., GDNF and NGF reverse changes in repriming of TTX-sensitive Na(+) 
currents following axotomy of dorsal root ganglion neurons. J Neurophysiol, 2002. 88(2): 
p. 650-8. 

133. Park, S.Y., et al., Downregulation of voltage-gated potassium channel alpha gene 
expression by axotomy and neurotrophins in rat dorsal root ganglia. Mol Cells, 2003. 
16(2): p. 256-9. 

134. Fjell, J., et al., Differential role of GDNF and NGF in the maintenance of two TTX-resistant 
sodium channels in adult DRG neurons. Brain Res Mol Brain Res, 1999. 67(2): p. 267-82. 

135. Cummins, T.R., et al., Glial-derived neurotrophic factor upregulates expression of 
functional SNS and NaN sodium channels and their currents in axotomized dorsal root 
ganglion neurons. J Neurosci, 2000. 20(23): p. 8754-61. 

136. Toyoda, M., et al., Nerve growth factor and substance P are useful plasma markers of 
disease activity in atopic dermatitis. Br J Dermatol, 2002. 147(1): p. 71-9. 

137. Johansson, O., Y. Liang, and L. Emtestam, Increased nerve growth factor- and tyrosine 
kinase A-like immunoreactivities in prurigo nodularis skin -- an exploration of the cause of 
neurohyperplasia. Arch Dermatol Res, 2002. 293(12): p. 614-9. 

138. Nakamura, M., M. Toyoda, and M. Morohashi, Pruritogenic mediators in psoriasis vulgaris: 
comparative evaluation of itch-associated cutaneous factors. Br J Dermatol, 2003. 149(4): 
p. 718-30. 



www.manaraa.com

23 
 

139. Yamaguchi, J., et al., Quantitative analysis of nerve growth factor (NGF) in the atopic 
dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. J 
Dermatol Sci, 2009. 53(1): p. 48-54. 

140. Tobin, D., et al., Increased number of immunoreactive nerve fibers in atopic dermatitis. J 
Allergy Clin Immunol, 1992. 90(4 Pt 1): p. 613-22. 

141. Murota, H., et al., Artemin causes hypersensitivity to warm sensation, mimicking warmth-
provoked pruritus in atopic dermatitis. J Allergy Clin Immunol, 2012. 130(3): p. 671-682 
e4. 

142. Ostlere, L.S., T. Cowen, and M.H. Rustin, Neuropeptides in the skin of patients with atopic 
dermatitis. Clin Exp Dermatol, 1995. 20(6): p. 462-7. 

143. Foster, E.L., et al., Eosinophils increase neuron branching in human and murine skin and 
in vitro. PLoS One, 2011. 6(7): p. e22029. 

144. Roggenkamp, D., et al., Atopic keratinocytes induce increased neurite outgrowth in a 
coculture model of porcine dorsal root ganglia neurons and human skin cells. J Invest 
Dermatol, 2012. 132(7): p. 1892-900. 

145. Takano, N., T. Sakurai, and M. Kurachi, Effects of anti-nerve growth factor antibody on 
symptoms in the NC/Nga mouse, an atopic dermatitis model. J Pharmacol Sci, 2005. 
99(3): p. 277-86. 

146. Takano, N., et al., Effects of high-affinity nerve growth factor receptor inhibitors on 
symptoms in the NC/Nga mouse atopic dermatitis model. Br J Dermatol, 2007. 156(2): p. 
241-6. 

147. Indo, Y., Nerve growth factor and the physiology of pain: lessons from congenital 
insensitivity to pain with anhidrosis. Clin Genet, 2012. 82(4): p. 341-50. 

148. Rukwied, R.R., et al., NGF sensitizes nociceptors for cowhage- but not histamine-induced 
itch in human skin. J Invest Dermatol, 2013. 133(1): p. 268-70. 

149. Rolan, P.E., et al., First-In-Human, Double-Blind, Placebo-Controlled, Randomized, Dose-
Escalation Study of BG00010, a Glial Cell Line-Derived Neurotrophic Factor Family 
Member, in Subjects with Unilateral Sciatica. PLoS One, 2015. 10(5): p. e0125034. 

150. Okkerse, P., et al., Pharmacokinetics and pharmacodynamics of multiple doses of 
BG00010, a neurotrophic factor with anti-hyperalgesic effects, in patients with sciatica. Br 
J Clin Pharmacol, 2016. 82(1): p. 108-17. 

151. Marshall, J.S., et al., Nerve growth factor modifies the expression of inflammatory 
cytokines by mast cells via a prostanoid-dependent mechanism. J Immunol, 1999. 162(7): 
p. 4271-6. 

152. Stempelj, M. and I. Ferjan, Signaling pathway in nerve growth factor induced histamine 
release from rat mast cells. Inflamm Res, 2005. 54(8): p. 344-9. 



www.manaraa.com

24 
 

153. Stempelj, M., A. Bavec, and I. Ferjan, Regulation of nerve growth factor induced histamine 
and arachidonic acid release from rat mast cells by cannabinoids. Inflamm Res, 2006. 55 
Suppl 1: p. S09-10. 

154. Tal, M. and R. Liberman, Local injection of nerve growth factor (NGF) triggers 
degranulation of mast cells in rat paw. Neurosci Lett, 1997. 221(2-3): p. 129-32. 

155. Lacroix-Fralish, M.L., J.B. Ledoux, and J.S. Mogil, The Pain Genes Database: An 
interactive web browser of pain-related transgenic knockout studies. Pain, 2007. 131(1-
2): p. 3 e1-4. 

156. Chizh, B.A., et al., The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-
mediated activity and inflammatory hyperalgesia in humans. Pain, 2007. 132(1-2): p. 132-
41. 

157. Kivitz, A.J., et al., Efficacy and safety of tanezumab versus naproxen in the treatment of 
chronic low back pain. Pain, 2013. 154(7): p. 1009-21. 

158. Skljarevski, V., et al., Efficacy of Duloxetine in Patients with Chronic Pain Conditions. Curr 
Drug ther, 2011. 6(4): p. 296-303. 

159. Wernicke, J.F., et al., A randomized controlled trial of duloxetine in diabetic peripheral 
neuropathic pain. Neurology, 2006. 67(8): p. 1411-20. 

160. Hill, R., NK1 (substance P) receptor antagonists--why are they not analgesic in humans? 
Trends Pharmacol Sci, 2000. 21(7): p. 244-6. 

161. Taneja, A., et al., Translation of drug effects from experimental models of neuropathic pain 
and analgesia to humans. Drug Discov Today, 2012. 17(15-16): p. 837-49. 

162. Mogil, J.S., Animal models of pain: progress and challenges. Nat Rev Neurosci, 2009. 
10(4): p. 283-94. 

163. Contopoulos-Ioannidis, D.G., E. Ntzani, and J.P. Ioannidis, Translation of highly promising 
basic science research into clinical applications. Am J Med, 2003. 114(6): p. 477-84. 

164. Ergorul, C. and L.A. Levin, Solving the lost in translation problem: improving the 
effectiveness of translational research. Curr Opin Pharmacol, 2013. 13(1): p. 108-14. 

165. Hug, A. and N. Weidner, From bench to beside to cure spinal cord injury: lost in 
translation? Int Rev Neurobiol, 2012. 106: p. 173-96. 

166. Gereau, R.W., et al., A pain research agenda for the 21st century. J Pain, 2014. 15(12): 
p. 1203-14. 

167. Solinski, H.J., T. Gudermann, and A. Breit, Pharmacology and signaling of MAS-related 
G protein-coupled receptors. Pharmacol Rev, 2014. 66(3): p. 570-97. 

168. Solinski, H.J., et al., Human sensory neuron-specific Mas-related G protein-coupled 
receptors-X1 sensitize and directly activate transient receptor potential cation channel V1 
via distinct signaling pathways. J Biol Chem, 2012. 287(49): p. 40956-71. 



www.manaraa.com

25 
 

169. Zhang, X.L., et al., Inflammatory mediator-induced modulation of GABA currents in human 
sensory neurons. Neuroscience, 2015. 310: p. 401-409. 

170. Li, Y., et al., The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent 
Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci, 2015. 35(39): 
p. 13487-500. 

171. Anand, U., et al., Angiotensin II type 2 receptor (AT2 R) localization and antagonist-
mediated inhibition of capsaicin responses and neurite outgrowth in human and rat 
sensory neurons. Eur J Pain, 2013. 17(7): p. 1012-26. 

172. Davidson, S., et al., Human sensory neurons: Membrane properties and sensitization by 
inflammatory mediators. Pain, 2014. 155(9): p. 1861-70. 

 
 

  



www.manaraa.com

26 
 

 
 
 
 
 
 
 

Chapter 2 
 
 

Protein kinase Cδ mediates histamine-evoked itch and responses in 
pruriceptors 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter contains the manuscript: 
Valtcheva MV, Davidson S, Zhao C, Leitges M, Gereau RW. Protein kinase Cδ mediates 
histamine-evoked itch and responses in pruriceptors. Molecular pain. 2015;11(1):1. doi: 
10.1186/1744-8069-11-1. PubMed PMID: 25558916; PMCID: PMC4298070 



www.manaraa.com

27 
 

Abstract 
 

Itch-producing compounds stimulate receptors expressed on small diameter fibers that 

innervate the skin. Many of the currently known pruritogen receptors are Gq-Protein Coupled 

Receptors (GqPCR), which activate Protein Kinase C (PKC). Specific isoforms of PKC have been 

previously shown to perform selective functions; however, the roles of PKC isoforms in regulating 

itch remain unclear. In this study, we investigated the novel PKC isoform PKCδ as an intracellular 

modulator of itch signaling in response to histamine and the non-histaminergic pruritogens 

chloroquine and β-alanine. Behavioral experiments indicate that PKCδ knock-out (KO) mice have 

a 40% reduction in histamine-induced scratching when compared to their wild type littermates. 

On the other hand, there were no differences between the two groups in scratching induced by 

the MRGPR agonists chloroquine or β-alanine. PKCδ was present in small diameter dorsal root 

ganglion (DRG) neurons. Of PKCδ-expressing neurons, 55% also stained for the non-peptidergic 

marker IB4, while a smaller percentage (15%) expressed the peptidergic marker CGRP. Twenty-

nine percent of PKCδ-expressing neurons also expressed TRPV1. Calcium imaging studies of 

acutely dissociated DRG neurons from PKCδ-KO mice show a 40% reduction in the total number 

of neurons responsive to histamine. In contrast, there was no difference in the number of 

capsaicin-responsive neurons between KO and WT animals. Acute pharmacological inhibition of 

PKCδ with an isoform-specific peptide inhibitor (δV1-1) also significantly reduced the number of 

histamine-responsive sensory neurons. Our findings indicate that PKCδ plays a role in mediating 

histamine-induced itch, but may be dispensable for chloroquine- and β-alanine-induced itch.    
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Introduction 

Itch, clinically known as pruritus, is an unpleasant sensory and emotional experience that 

leads to the desire to scratch [1, 2]. Chronic itch can result in severe anxiety, self-mutilation, and 

impaired overall quality of life that is comparable to chronic pain [3-5]. Several histamine-

dependent and histamine-independent itch receptors have been recently identified; however, few 

of the intracellular mediators downstream of these receptors have been characterized. Elucidating 

the intracellular mediators that activate pruriceptors may provide a new set of targets to aid in the 

generation of more specific and efficacious treatments.  

Intradermal histamine induces itch via direct activation of the H1 histamine receptor, which 

is expressed in sensory neurons [6-10]. Additionally, several subtypes of the recently 

characterized class of Mas-related gene protein receptors (Mrgpr) have been shown to respond 

selectively to a variety of non-histaminergic, itch-producing compounds. For example, MrgprA3 is 

activated by the anti-malarial drug chloroquine (CQ) [11, 12], and β-alanine induces itch by 

activating a subset of nonpeptidergic MrgprD-expressing sensory neurons [13, 14].  

A common property of many of the identified pruritogen receptors, including the H1 

histamine receptor (H1R), MrgprA3, and MrgprD, is that they are Gq-protein coupled receptors 

(GqPCRs) [10-12, 14]. Canonically, GqPCRs activate phospholipase C (PLC), which cleaves 

phosphatidylinositol (PIP2) into inositoltriphosphate (IP3) and diacylglycerol (DAG), resulting in 

release of intracellular calcium stores and activation of downstream targets. However, the itch-

mediating factors downstream of PLC are largely unknown [10, 15]. Protein kinase C (PKC) is 

coupled to the canonical GqPCR/PLC pathway via activation by DAG and/or calcium and therefore 

may play a role in the signaling of itch.  

A number of PKC isoforms are expressed in sensory neurons [16-19]. One of these 

isoforms is PKCδ, a member of the “novel” PKC isozymes, which depends on DAG but not 

calcium for its activation. Previously, we demonstrated that PKCδ is dispensable for withdrawal 

responses to acute noxious mechanical and thermal stimuli [20]. However, studies of H1R 
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signaling in human aortic endothelial cells and HeLa cells showed that PKCδ is phosphorylated 

in response to histamine [21, 22]. PKCδ also mediated histamine-induced H1R mRNA 

upregulation and downstream activation of ERK1/2 and p38 [21, 22]. These lines of evidence 

suggest that PKCδ could play a specific role as an intracellular modulator of itch in sensory 

neurons.  

In this study, we tested the hypothesis that PKCδ contributes to pruritogen-induced itch. 

We determined the role of PKCδ in histaminergic and non-histaminergic itch by examining 

scratching responses to histamine and the non-histaminergic pruritogens chloroquine and β-

alanine, which activate separate pruriceptor subpopulations. We characterized the distribution of 

PKCδ in sensory neurons and show that both genetic deletion and pharmacological inhibition of 

PKCδ significantly decrease the proportion of histamine-responsive neurons.  
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Materials and Methods 

Subjects and ethical approval 

All experiments were conducted in accordance with the National Institute of Health guidelines 

and received the approval of the Animal Care and Use Committee of Washington University 

School of Medicine. Eight to twelve-week old male littermate mice were housed on a 12 hour light-

dark cycle and allowed ad libitum access to food and water. 

PKCδ-KO mice were obtained from Dr. Michael Leitges [23]. These mice were generated 

using a standard gene targeting approach to insert a LacZ/neo cassette in the first transcribed 

exon of the PKCδ gene to abolish transcription, resulting in a global knock-out [23]. PKCδ-KO 

mice were backcrossed on a C57BL/6 background for at least 6 generations prior to use. PKCδ-

KO mice were then crossed with wild type C57BL/6 mice to generate heterozygous mice, which 

were used to generate wild type and KO littermates.  

 

Pruritogen-induced scratching behavior 

The nape of the neck and upper back were shaved with electric clippers one day prior to 

behavioral experiments. On the day of experiment, mice were placed in individual plexiglass 

observation boxes and allowed to acclimate in the presence of white noise for 2 hours. Using 

gentle restraint, 50μl consisting of pruritogen dissolved in 0.9% normal saline was injected 

intradermally at the nape of the neck using a 29½ gauge insulin syringe. The following pruritogen 

amounts were used: 1mg histamine (Sigma Aldrich, St. Louis, MO), 200μg chloroquine (Sigma 

Aldrich, St. Louis, MO), and 223μg β-alanine (Sigma Aldrich, St. Louis, MO). A single scratch bout 

was defined as one or more rapid back-and-forth motions of the hindpaw directed at the injection 

site, ending with either a pause, licking, or biting of the toes or placing of the hindpaw on the floor. 

Scratch bouts by the hind-paw directed at the injection site were counted over a period of 30 

minutes. Experimenters were blinded to mouse genotype.  
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PKCδ immunohistochemistry and Western Blotting  

For Western blotting, mice were euthanized by swift decapitation and lumbar spinal cord and 

lumbar DRG were removed. Tissue samples were homogenized in homogenization buffer (20mM 

Tris-HCl, ph7.4, 1mM EDTA, 1mM sodium pyrophosphate, 25μg/ml aprotinin, 25μg/ml leupeptin 

and 100μM phenylmethylsufonyl fluoride) on ice. 7μg of spinal cord and DRG protein were 

separated using 4-12% SDS-PAGE, then transferred to nitrocellulose membrane. Membrane was 

blocked in Odyssey blocking buffer for 1 hour, then incubated in rabbit anti-PKCδ (1:1000, Santa 

Cruz) and mouse anti-β-Tubulin (1:1000, Sigma-Aldrich) primary antibodies in Odyssey buffer 

with 0.1% Tween-20 at 4°C overnight. Blots were then washed in TBS-0.1% Tween-20, and 

incubated for 1 hour at room temperature in secondary antibodies (goat anti-rabbit Alexa Fluor 

680 (1:20,000, Sigma Aldrich); goat anti-mouse IR800 (1:20,000, Sigma Aldrich)). Blots were 

washed and scanned using an Odyssey infrared scanner.     

For immunohistochemistry (IHC), mice were deeply anesthetized with a ketamine, xylazine, 

and acepromazine cocktail, then perfused intracardially with cold PBS followed by 4% 

paraformaldehyde in PBS. Lumbar DRG were removed and cryoprotected in 30% sucrose. 

Transverse sections were cut at 18μm thickness on a cryostat and collected on slides. To 

determine the percentage of total neurons that express PKCδ, dual labeling was performed with 

rabbit anti-PKCδ (1:50, Santa Cruz) and mouse anti-β-tubulin (1:1000, Sigma Aldrich) primary 

antibodies. Briefly, sections were blocked in 2% BSA, 0.1% Milk powder, 0.05% Tween-20 TBS 

for 1 hr, then incubated in primary antibodies overnight at 4°C. On day 2, slides were washed and 

incubated in secondary antibodies for 2-4 hours at 4°C (Alexa Fluor 488 Donkey anti-rabbit 1:200, 

Alexa Fluor 555 donkey anti-mouse 1:200, Invitrogen). Images were obtained using an upright 

epifluorescent microscope (Nikon 80i, CoolSnapES camera). Labeled neurons were counted in 

at least 3 randomly selected sections separated by >50μm per animal. The size distribution of 

PKCδ+ neurons was determined using ImageJ software to measure cell diameter. The 

percentage of PKCδ+ neurons that also expressed CGRP or IB4 was determined using dual 
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labeling for PKCδ and CGRP (goat anti-CGRP 1:400, Serotec) or Alexa-568 conjugated to IB4 

(1:400, Invitrogen) using the above-described procedures. PKCδ-TRPV1 coexpression was 

determined using a goat anti-PKCδ antibody (1:50, Santa Cruz) and a rabbit antibody directed 

against the TRPV1 C-terminus peptide (1:500) [24].   

 

Calcium imaging 

Scratching behavior was evoked with pruritic stimuli applied to the back skin where site 

directed scratching occurs. We expanded our functional analyses of neuronal physiology to 

include both thoracic and lumbar DRG. Mice were euthanized rapidly by decapitation and DRG 

removed and acutely dissociated using previously described methods [25].  Briefly, DRG were 

incubated in 45U papain/L-cysteine in Hank’s buffered saline solution (HBSS) without Ca2+ or 

Mg2+ and with 10mM HEPES for 20 minutes at 37°C and 5% CO2. Ganglia were then washed, 

followed by 20 minute incubation in 1.5 mg/ml collagenase in HBSS+HEPES. Ganglia were then 

triturated with fire-polished Pasteur pipettes, the dissociated cells were filtered through a 40 μm 

cell strainer, and were plated on poly-D-lysine and collagen-coated glass coverslips. Cells were 

incubated overnight at 37°C in 5% CO2 humidified air in culture medium (Neurobasal A with B27, 

pen/strep, 2mM glutamax, 5% fetal bovine serum (Gibco)). All experiments were performed within 

24 hours of plating.  

Cells were incubated in 3μg/ml Fura-2 AM (Molecular Probes) for 30 minutes and then 

incubated for 30 minutes in external solution (in mM): 130 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 30 

Glucose, 10 HEPES. For each recording, a coverslip was placed in a perfusion chamber and 

perfused with external solution at room temperature. Cells were viewed under an inverted 

microscope (Olympus Optical, Tokyo, Japan) and images were captured with a Hamamatsu Orca 

camera. SimplePCI Software was used to draw regions of interest (ROI) around Fura-loaded cells 

prior to recording. The ratio of fluorescence emission at an excitation wavelength of 357 and 

380nm was measured for each ROI. The experimental protocol consisted of a 2 minute baseline 
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followed by 30 second bath application of histamine (100μM in external solution), >8 minutes of 

external solution wash, 10 second application of capsaicin (200nM), >8 minutes of external 

solution wash, and 10 seconds of KCl (50mM) followed by wash (<2 minutes) to determine live 

neurons. A 10% or greater change from baseline 357nm/380nm ratio was considered a response 

to histamine. Capsaicin experiments were performed similarly except with 10 second capsaicin 

application (200nM). For experiments using PKCδ peptide inhibitor and scrambled peptide, cells 

were incubated in 100μM peptide solution (dissolved in external solution) for 30 minutes prior to 

recording (δV1-1 peptide inhibitor (Myr-SFNSYELGSL-NH2), peptide inhibitor scramble (Myr-

GLSFSEYLSN-NH2), Biomatik).  

 

List of abbreviations 

PKC: protein kinase C; GqPCR: Gq protein-coupled receptor; MRGPR: Mas-related gene protein 

coupled receptor; CQ: chloroquine; KO: knock-out; WT: wild type; DRG: dorsal root ganglion; SC: 

spinal cord; PLC: phospholipase C; PIP2: phosphatidylinositol; IP3: inositoltriphosphate; DAG: 

diacylglycerol; H1R: histamine receptor 1; ERK1/2: extracellular signal regulated kinase 1/2; 

CGRP: calcitonin gene-related peptide; IB4: isolectin B4; Scr: scramble; Inh: inhibitor; PBS: 

phosphate-buffered saline; HBSS: Hank’s buffered saline solution; IHC: immunohistochemistry; 

TRPV1: transient receptor potential vanilloid receptor 1; TRPA1: transient receptor potential 

cation channel, subfamily A, member 1; PGE2: prostaglandin E2; NGF: nerve growth factor; IL-6: 

interleukin-6 
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Results 

PKCδ mediates histamine-induced itch 

To determine if PKCδ plays a role in behavioral responses to itch, we assessed scratching 

responses to histamine and non-histaminergic pruritogens in PKCδ knock-out mice (PKCδ-KO) 

and their wild type littermates. Mice were injected intradermally at the nape of the neck with one 

of three pruritogens: histamine (1mg), chloroquine (CQ) (200μg), or β-alanine (223μg). PKCδ-KO 

mice scratched significantly less than their wild type littermates when injected with histamine 

(Figure 1A, p<0.05). On the other hand, chloroquine-induced scratching was not significantly 

different between WT and PKCδ KO mice (Figure 1B, p=0.129). There was also no difference in 

the number of scratch bouts induced by β-alanine (Figure 1C, p=0.61). These results indicate that 

PKCδ mediates histaminergic itch, but is not necessary for non-histaminergic itch induced by CQ 

and β-alanine.  

 

 
Figure 1. PKCδ-KO and WT scratching responses to pruritogens. A. PKCδ-KO mice 
scratched less than wild type littermates in response to intradermal histamine injection 
(WT=121.4±12.8 scratch bouts/30min, n=25; KO=73.8±15.5 scratch bouts/30min, n=19; 
unpaired t test p<0.05). B. Chloroquine (CQ)-induced scratching was not different between 
PKCδ-KO and WT mice (WT=163.7±22.6 scratch bouts/30min, n=23; KO=118.0±18.9 scratch 
bouts/30min, n=21; unpaired t test p=0.129). C. Scratch bouts induced by β-alanine were also 
not different between PKCδ-KO and WT mice (WT=57.0±10 scratch bouts/30min, n=6; 
KO=48.8±12.3 scratch bouts/30min, n=8; unpaired t test p=0.61). 
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PKCδ is preferentially expressed in small diameter DRG neurons 

PKCδ is expressed in a variety of tissues, including the brain and peripheral nervous 

system [19, 21, 26-33]. To assess whether PKCδ is localized to potential pruriceptive sensory 

neurons, immunohistochemistry (IHC) was used to characterize the distribution of PKCδ in dorsal 

root ganglion (DRG) neurons. Antibody specificity was confirmed via western blot using PKCδ-

KO DRG and spinal cord tissue. No antibody staining was found corresponding to the 78kD PKCδ 

band in PKCδ-KO DRG tissue (Figure 2A). This was further confirmed by IHC of knock-out and 

wild type DRG (Figure 2B). In wild type lumbar DRG, PKCδ was expressed in 43.2% of total 

neurons labeled with βIII tubulin (567/1314 cells, n=3 animals) and PKCδ expression was 

 
Figure 2. Immunological analyses of PKCδ in the spinal cord and DRG. A. Western blot 
demonstrating expression of PKCδ in WT DRG and spinal cord (SC) but not in PKCδ-KO tissue 
confirming the validity of the PKCδ antibody. B. Representative images of 18μm sections from 
WT and PKCδ-KO lumbar DRG. (Scale bar = 50μm) C. Histogram of cell diameter 
measurements of PKCδ+ and PKCδ- neurons illustrates the localization of PKCδ to small and 
medium diameter soma.  
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predominantly restricted to small diameter neurons (average diameter 23.3±0.19μm, min 11.6μm, 

max 36.2μm) (Figure 2C). 

 

PKCδ is expressed in peptidergic and non-peptidergic DRG neurons 

We further characterized PKCδ expression in small diameter DRG neurons by 

immunohistochemical analysis of peptidergic and non-peptidergic markers. Of peptidergic 

neurons identified by anti-Calcitonin Gene Related Peptide (CGRP+) immunoreactivity, 26.8% 

expressed PKCδ, while 14.7% of PKCδ-expressing neurons were CGRP-positive (Table 1, Figure 

3A-B). PKCδ was also expressed in non-peptidergic neurons identified by isolectin B4 (IB4) 

binding. Of IB4+ DRG neurons, 61.6% expressed PKCδ and 55.0% of PKCδ+ neurons exhibited 

IB4 binding (Table 1, Figure 3C-D). These findings indicate that PKCδ is expressed in both 

 
Figure 3. Localization of PKCδ and markers of peptidergic and non-peptidergic dorsal 
root ganglion neurons. A. Representative images of CGRP+, PKCδ+, and co-expressing 
(Merge) DRG neurons. B. Graphical representation of total neurons counted and degree of 
overlap (n = number of neurons). C, D. Representative images of IB4+, PKCδ+, and 
IB4+/PKCδ+ neurons and illustration of overlap.  E, F. Representative images of TRPV1+, 
PKCδ+, and TRPV+/PKCδ+ neurons and illustration of overlap. Inset demonstrates TRPV1 
antibody stain in TRPV1-KO mice. (Scale bar = 50μm; Arrowheads indicate example cells that 
express both markers). 
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peptidergic and non-peptidergic sensory neurons, with greater expression overlap found with non-

peptidergic IB4+ neurons. 

Behavioral and physiological studies have shown that itch produced by histamine is largely 

dependent on the non-specific cation channel transient receptor potential vanilloid receptor 1 

(TRPV1) [34-36]. Because PKC has previously been demonstrated to modulate TRPV1 function 

and may present one potential mechanism by which PKCδ regulates itch, we determined the 

degree of overlap between PKCδ and TRPV1 expression [24, 37]. We first confirmed the 

specificity of our antibody directed against TRPV1 using TRPV1 knockout mice (Figure 3E, inset). 

Our data indicate that 29.1% of PKCδ-positive neurons were also TRPV1-positive, and 48.9% of 

TRPV1-positive neurons also expressed PKCδ, suggesting a potential functional relationship 

between PKCδ and TRPV1 (Figure 3E-F; Table 1).  

Table 1. Percent of DRG neurons in which PKCδ colocalizes with other markers (mean ± 
SEM). (n = 3-4 mice per marker.)  

 
 
Marker 

% of PKCδ+ neurons 
expressing marker 

% of marker+ neurons 
expressing PKCδ 

CGRP 14.7 ± 2.5 26.8 ± 3.5 

IB4 55.0 ± 3.0 61.6 ± 7.9 

TRPV1 29.1 ± 2.2 48.9 ± 4.0 

 

PKCδ-KO sensory neurons exhibit diminished responses to histamine 

PKCδ is expressed in the brain, spinal cord, and the peripheral nervous system [33, 38-

41]. Therefore, global genetic deletion of PKCδ in our knockout mice makes it difficult to pinpoint 

where PKCδ functions to modulate histamine-induced scratching. The expression of PKCδ in 

small diameter sensory neurons suggests that it may mediate histamine-evoked itch by signaling 

in nociceptive neurons responsive to pruritic agents (i.e., pruriceptors). To determine if PKCδ 

directly modulates neuronal responses to histamine, calcium imaging was performed on acutely 

dissociated adult mouse DRG neurons (Figure 4A-B). Of the total sensory neurons treated with 

histamine, 11.1% of wild type neurons responded to bath application of 100μM histamine 



www.manaraa.com

38 
 

(126/1137 total WT neurons, N=5 animals), but only 6.7% of PKCδ-KO neurons responded to 

histamine (47/706 total KO neurons, N=3 animals), indicating a significant reduction of 39.6% in 

the proportion of histamine responsive neurons (p<0.01, χ2 test) (Figure 4C). No significant 

difference in peak calcium responses to histamine was detected between knock-out and wild type 

cells (WT 33.6±2.8% increase from baseline, n=126 cells; KO 39.9±6.6% increase from baseline, 

n=47 cells, unpaired t-test, p=0.304) (Figure 4D).  

We hypothesized that PKCδ could contribute to neuronal responses to histamine by 

mediating histamine receptor coupling to TRPV1, or by regulating the normal expression or 

function of TRPV1. To investigate whether the absence of PKCδ affects the activation of TRPV1 

within histamine-responsive neurons, we applied the TRPV1-specific agonist capsaicin after the 

histamine response. We found that 58.7% of WT histamine-responsive neurons subsequently 

responded to capsaicin (74/126 total His+ neurons), while only 40.4% of KO histamine-sensitive 

neurons responded to capsaicin (19/47 total His+ neurons; p<0.05, χ2 test) (Figure 4E). To 

determine whether the functional expression of TRPV1 is altered in PKCδ-KO neurons, we tested 

WT and KO sensory neurons for responses to capsaicin. There were no differences in the total 

number of capsaicin-responsive neurons between KO and WT groups (117/194 (60.3%) WT 

neurons, 144/259 (55.6%) KO neurons, p=0.315, χ2 test, Figure 4G). Together, these data 

indicate that the reduction in histamine responses is not due to altered levels of TRPV1 receptors 

in the KO, and support the idea that PKCδ could modulate TRPV1 downstream of histamine 

receptor activation.  

To further control for the possibility of developmental effects or compensatory 

mechanisms that may occur with congenital genetic deletion of PKCδ, we performed calcium 

imaging experiments with the same experimental design using acute pharmacological inhibition 

in wild type DRG cultures. The δV1-1 peptide inhibitor has been shown to inhibit PKCδ activation 

in vitro and in vivo by competitively binding to receptor for activated C-kinase (RACK) 
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Figure 4. PKCδ mediates sensory neuron responses to histamine. A. Representative 
image of dissociated DRG neurons loaded with Fura2-AM. B. Representative traces of 
selected cells (corresponding colored circles in A) in response to histamine, capsaicin, and 
KCl. C. Proportion of total histamine responders in WT and KO DRG neurons (WT=11.1% 
(126/1137 total WT neurons); KO=6.7% (47/706 total KO neurons); ** p<0.01, χ2 test). D. Peak 
calcium increase in response to histamine, defined as % signal increase above baseline. WT 
33.6±2.8% change from baseline, n=126 cells; KO 39.9±6.6% change from baseline, n=47 
cells, unpaired t-test, p=0.304. E. Percent of histamine-responsive neurons that responded to 
capsaicin (74/126 WT His+ neurons; 19/47 KO His+ neurons; p<0.05, χ2 test). F. Proportion of 
capsaicin-responsive neurons (117/194 WT neurons, 144/259 KO neurons, p=0.315, χ2 test). 
G. Proportion of histamine-responsive neurons in scramble- vs. inhibitor-treated groups 
(18.5% (75/405) of scramble-treated neurons vs. 13.1% (69/527) of peptide-treated neurons, 
p<0.05, χ2 test). H. Peak calcium increase in response to histamine (inhibitor: 33.23±2.7% 
change from baseline, n=69 cells; scramble: 41.0±3.7% change from baseline, n=75 cells, 
p=0.095, unpaired t test). 
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proteins, which confer PKC isoform substrate specificity [31, 42-45]. DRG neurons were 

incubated with the peptide inhibitor δV1-1 for 30 minutes prior to recording. Consistent with our 

findings in PKCδ-KO neurons, there was a significant reduction in the total number of histamine-

responsive neurons treated with peptide inhibitor when compared to scramble peptide-treated 

control neurons (18.5% (75/405) of scramble-treated neurons vs. 13.1% (69/527) of peptide-

treated neurons, N=4 animals, p<0.05, χ2 test) (Figure 4F). Peak calcium responses induced by 

histamine were not different between inhibitor- and scramble-treated groups (inhibitor 33.23±2.7% 

change from baseline, n=69 cells; scramble 41.0±3.7% change from baseline, n=75 cells, 

p=0.095, unpaired t test) (Figure 4G).  

 

  



www.manaraa.com

41 
 

Discussion 

Pruritic stimuli can activate sensory neurons via specific intracellular signaling cascades, 

which represent potential targets for anti-pruritics, but these cascades remain poorly understood. 

Characterizing signaling components is a significant challenge, in part because of the great 

diversity of recently identified pruritic receptors. Some receptors involved in pruritus are coupled 

to Gi/o cascades such as the H4 histamine receptor, while others utilize kinase signaling pathways 

like the TSLP/IL-7 receptors [6, 7, 46, 47]. However, the majority of identified pruritic receptors, 

including the H1 receptor and the “orphan” family of MRGPR receptors, are linked by a common 

Gαq signaling mechanism [10, 48-51]. In this study we focused on a component downstream of 

the canonical Gαq signaling pathway, the serine/threonine kinase PKC.  

PKC isozymes are divided into three groups: classic (activated by DAG and Ca2+), novel 

(activated by DAG but not Ca2+), and atypical (activated by neither DAG nor Ca2+) [52, 53]. 

Specific PKC isoforms have been shown to selectively regulate nociceptive behavior and 

nociceptor physiology [16, 17, 19, 54-60]. We previously showed that the novel isozyme PKCδ is 

dispensable for acute mechanical and thermal nociceptive behaviors [20].  Previous reports have 

implicated PKCδ in H1R signaling in non-neuronal cells [21, 22], but the specific role of PKCδ in 

pruriceptor signaling and itch had not been explored. In this study we found that PKCδ was 

necessary for the full expression of histamine-induced itch, but it did not have significant effects 

on histamine-independent itch produced by the MRGPR ligands chloroquine or β-alanine. 

To determine whether the scratching deficit we observed in PKCδ null mice could be 

attributed to loss of function within sensory neurons, we examined anti-PKCδ staining in mouse 

lumbar DRG. Previous studies indicated that PKCδ is expressed in murine spinal cord and DRG, 

but the precise subset of PKCδ-positive neurons had not been characterized [33, 38-41]. We 

found that PKCδ expression was restricted to small diameter dorsal root ganglion neurons. 

Furthermore, although PKCδ was expressed in both peptidergic and non-peptidergic sensory 

neurons, it was greatly enriched in the non-peptidergic subset. Both peptidergic and 
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nonpeptidergic fibers have been shown to play a role in pruritus. Histaminergic itch is largely 

dependent on CGRPα-positive neurons [61], however, a subset of histamine-responsive neurons 

also express the nonpeptidergic marker IB4 [11, 62].  

Calcium imaging studies of dissociated DRG neurons demonstrated that genetic deletion 

of PKCδ resulted in a significant reduction of the proportion of adult sensory neurons that were 

histamine-responsive. We further confirmed these results using acute pharmacological inhibition, 

supporting the hypothesis that PKCδ functions within normal wild type sensory neurons to 

mediate acute histaminergic signaling. The expression of PKCδ in small diameter sensory 

neurons, along with the reduction of histamine-responsive sensory neurons, suggest a peripheral 

mechanism for the behavioral effects of global PKCδ deletion on histamine-induced scratching.  

Following histamine release, sensory neuron signaling to produce itch is thought to 

depend on functional coupling of H1R to TRPV1. Supporting this idea, mice lacking TRPV1 exhibit 

greatly reduced scratching behavior and cellular responses to histamine, and blocking TRPV1 

channel function likewise abolishes the response of sensory neurons to histamine [34, 36, 63]. 

The mechanisms by which H1R recruits TRPV1 are complex and several different signaling 

pathways have been implicated [35, 36, 64, 65]. One possible mechanism by which histamine 

could couple to TRPV1 in sensory neurons is through PLC-induced PKC activation. This is further 

supported by an expanding body of literature indicating that PKC directly modulates TRPV1 

function [24, 37]. Indeed, inhibitors for PLC and PKC prevent histamine-induced TRPV1-

potentiation [64]. We previously found that acute mechanical and thermal pain were independent 

of PKCδ. In contrast, PKCδ was necessary for the full expression of thermal hyperalgesia during 

Complete Freund’s Adjuvant-induced inflammation, which is a TRPV1 dependent process [20].  

In this study, 49% of TRPV1-expressing neurons were PKCδ-positive and we showed a 

significant reduction in the proportion of capsaicin-responsive neurons within the subset of 

neurons responsive to histamine. Additionally, sensory neurons from PKCδ-KO mice not 

previously treated with histamine responded similarly to wild type neurons when challenged with 
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capsaicin. These observations indicate that acute detection of heat stimuli by TRPV1 is not 

dependent on PKCδ, but suggest that PKCδ could function downstream of the histamine receptor 

to modulate TRPV1 function. In further support of this idea, several other inflammatory mediators 

including PGE2, NGF, and IL-6 have been shown to activate PKCδ [41, 66-68]. It is possible that 

pruritic dermatoses marked by inflammation may recruit PKCδ, resulting in sensory neuron 

modulation that could potentiate itch. 

In contrast to histaminergic signaling, the MRGPR receptors appear to produce their 

pruritic effects through an alternative, PKCδ-independent pathway. Chloroquine activates 

MRGRPA3 which couples to the irritant receptor TRPA1 to produce itch. Neuronal responses to 

chloroquine were prevented by inhibiting Gβγ subunit activity, suggesting that the Gαq pathway is 

not necessary for chloroquine-induced itch [15]. However, MRGPRA3 was also recently shown 

to sensitize TRPV1 via a PKC mechanism likely dependent on Gαq signaling, suggesting a 

possible mechanism for thermal sensitization [69]. This suggests that MRGPRA3 may have 

biased signaling mechanisms that lead to itch and/or TRPV1-related sensitization. Thus, the 

histamine receptor and MRGPRs may share a pathway leading to sensitization of TRPV1 via PKC 

signaling, despite an alternative Gβγ mechanism for MRGPRA3 signaling of itch [48, 70]. 

In summary, we found that PKCδ is a mediator of histaminergic itch signaling in sensory 

neurons. Although we specifically investigated PKCδ in this study, other PKC isoforms may also 

be involved in modulating the response to itch. For example, another novel PKC isozyme, PKCε, 

is expressed in largely IB4+ neurons, and has been shown to also modulate TRPV1 responses 

[16, 59, 60, 71]. The sensory neuron responses involved in itch are complex, involving multiple 

molecular cascades which may be differentially mediated by specific PKC isoforms. Future 

studies that investigate the roles of PKC isozymes in itch may contribute to better therapeutic 

specificity for the treatment of acute and chronic pruritus.  
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Abstract 

Chronic pruritic conditions are often associated with dry skin and loss of epidermal barrier 

integrity. In this study, repeated application of acetone and ether, followed by water (AEW) to the 

cheek skin of mice produced persistent scratching behavior with no increase in pain-related 

forelimb wiping, indicating the generation of itch without pain. Cheek skin immunohistochemistry 

showed a 64.5% increase in total epidermal innervation in AEW-treated mice compared to water-

treated controls. This increase was independent of scratching, because mice prevented from 

scratching by Elizabethan collars showed similar hyperinnervation. To determine the effects of 

dry skin treatment on specific subsets of peripheral fibers, we examined Ret-positive, CGRP-

positive, and GFRα3-positive intraepidermal fiber density. AEW treatment increased Ret-positive 

fibers, but not CGRP-positive or GFRα3-positive fibers, suggesting that a specific subset of non-

peptidergic fibers could contribute to dry skin itch. To test whether trigeminal ganglion neurons 

innervating the cheek exhibited altered excitability after AEW treatment, primary cultures of 

retrogradely labeled neurons were examined using whole-cell patch clamp electrophysiology. 

AEW treatment produced no differences in measures of excitability compared to water-treated 

controls. In contrast, a significantly higher proportion of trigeminal ganglion neurons were 

responsive to the non-histaminergic pruritogen chloroquine after AEW treatment. We conclude 

that non-peptidergic, Ret-positive fibers and chloroquine-sensitive neurons may contribute to dry 

skin pruritus.  
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Introduction 

 Pruritus is a primary complaint associated with xerosis (dry skin) and other dermatoses 

that compromise skin barrier integrity such as atopic dermatitis and psoriasis [1, 2]. A rodent 

model of persistent and ongoing dry skin pruritus was previously developed by application of 

equal parts acetone and ether followed by water (AEW) to the rostral back skin [3]. Adaptation of 

the AEW model to the hind-limb, where biting and licking behaviors were used to indicate itch, 

showed an absence of behavioral sensitization to heat and mechanical stimuli, suggesting the 

dry skin produced itch but not hyperalgesia [4]. Recently, clear differentiation between pain and 

itch behaviors was achieved by application of algogens or pruritogens to the rodent cheek [5, 6]. 

When repeated AEW treatments were applied to the cheek, hind-limb scratching behavior was 

evoked, indicating that dry skin produced ongoing itch [7]. 

The mechanisms by which dry skin generates itch are unclear. Intriguingly, human pruritic 

dermatoses are frequently associated with increased intraepidermal fiber density [8-11]. 

Increased intraepidermal fiber density was also reported after a single, acute application of 

acetone in rodents [12, 13], and has been hypothesized to occur in AEW-induced itch [14]. 

However, scratching after AEW treatment develops with a latency of 3 days, suggesting that the 

sprouting fibers observed after a single treatment may be insufficient to induce itch [3, 4, 15]. The 

identity of the expanded peripheral fibers is not known, nor is it understood whether fiber 

hyperinnervation directly contributes to pruritus.  

In addition to possible changes in epidermal innervation, enhancement of pruritic receptor 

function and phenotypic switching of sensory neurons into pruriceptors may contribute to the 

increased itch generated by dry skin. Like many intractable pruritic conditions, AEW-induced itch 

is thought to be histamine-independent [3]. Novel non-histaminergic neural pathways and pruritic 

receptors have recently been identified [16]. Importantly, members of the Mas-related gene 

protein receptor family (Mrgprs) are activated by the non-histaminergic pruritogen chloroquine, 

and ablation of MrgprA3 resulted in decreased scratching after AEW treatment [17, 18]. MrgprA3 
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is functionally coupled to TRPA1, a channel that exhibits sensitivity to a wide range of irritants 

including mustard oil and formalin [19-22]. A significant reduction in scratching was observed in 

TRPA1 knock-out mice exposed to AEW treatment. Furthermore, AEW treatment induced 

upregulation of MrgprA3 mRNA, suggesting that these receptors may contribute to dry skin-

induced itch [7].  

The aim of this study was to determine the effects of dry skin pruritus on peripheral fiber 

anatomy and the physiological properties of sensory neurons innervating dry skin. Intraepidermal 

innervation was characterized and quantified with and without scratch-preventing Elizabethan 

collars to determine whether scratching itself contributes to changes in nerve fiber density in dry 

skin. We tested the hypothesis that dry skin produces peripheral sensitization by enhancing the 

excitability of trigeminal neurons. Finally, we monitored calcium responses evoked by chloroquine 

and mustard oil from AEW-treated and control animals to test for altered expression or function 

of itch-related receptors.   
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Materials and Methods 

Animals and Acetone-Ether-Water (AEW) treatment 

All experiments were conducted in accordance with the National Institutes of Health 

guidelines and received the approval of the Animal Care and Use Committee of Washington 

University, School of Medicine. 8-12 week old littermate mice (C57BL/6 (Jackson lab) or Ret-

EGFP [23, 24]) were housed on a 12 hour light-dark cycle and allowed ad libitum access to food 

and water. Ret-EGFP reporter mice (129/SvJ:C57BL/6) were obtained from Dr. Jain [23]. Cheek 

skin was shaved with electric clippers one day prior to the start of acetone-ether-water treatments. 

The acetone-ether group was treated with a 1:1 mixture of acetone and diethyl ether (Sigma, St. 

Louis, MO) for 30 seconds by soaking and then applying a gauze-wrapped cotton tip to the cheek, 

followed by similarly applied water for 30 seconds. Control animals were treated with water only. 

After 6 days of twice per day treatments (morning and evening), scratching behavior was 

quantified 6-8 hours after the final AEW treatment. Mice were placed in individual observation 

chambers and allowed to acclimate for 1 hour prior to observation. Bouts of scratching were then 

counted for 1 hour with experimenters blinded to treatment. A bout of scratching was defined as 

any number of individual scratch events separated by a pause. During the pause, behaviors such 

as licking or biting of the hind-limb, holding the limb motionless, or putting the limb down on the 

surface, could occur. Wiping behavior was taken to indicate pain and was defined as a rostrally-

directed movement of the ipsilateral forelimb across the cheek starting from the ear [5, 6]. 

Scratching behavior with continued AEW treatment has been reported to persist for at least 2 

weeks [4, 15]. 

  

Immunohistochemistry 

After six days of AEW treatment, mice were deeply anesthetized (ketamine-xylazine-

acepromazine: 38-1.92-0.38 mg/mL; 2.7 mL/kg). The treated skin was dissected and immersion-

fixed in Zamboni’s fixative for 4 hours, rinsed in PBS, and cryoprotected in 30% sucrose, then 
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sectioned at 30𝜇m and collected on slides. Wild type C57BL/6 mice were used to determine β-III 

tubulin, CGRP, and GFRα3 fiber innervation, while a separate strain of Ret-EGFP reporter 

mice[23, 24] were used to determine Ret-positive fiber density. Antibodies and dilutions: rabbit 

anti-βIII tubulin (1:1000, Covance), goat anti-CGRP (1:1000, Serotec), goat anti-GFRα3 (1:100, 

R&D Systems), rabbit anti-GFP (1:1000, Invitrogen), Alexa Fluor 488/555 donkey anti-rabbit 

(1:200-400, Invitrogen), Alexa Fluor 488 donkey anti-goat (1:200-350, Invitrogen). These 

concentrations are based on previous demonstrations of intraepidermal fiber staining [24-26]. 

Specificity of the GFRα3 antibody was previously shown using a GFRα3 knock-out mouse [27]. 

All slides were stained with bisbenzamide (1:40,000, Sigma, St. Louis, MO.) and MetaMorph 

Software (Molecular Devices, Sunnyvale, CA.) was used to measure the length of the dermal-

epidermal border. In each examined section labeled fibers crossing the dermal-epidermal border 

were counted on an upright epifluorescent microscope (Nikon 80i; CoolSnapES camera). Six 

examined sections separated by >60µm were analyzed for each animal and the mean fiber 

density was calculated. To determine whether changes in fiber innervation were dependent on 

scratching, modified Elizabethan collars (Harvard Apparatus, Holliston, MA.) were secured at the 

start of treatment in both AEW and water-only groups. For hematoxylin and eosin (H&E) staining, 

tissue was fixed in Zamboni’s fixative for 2-4 hours, then embedded in paraffin. Sections 10 µm 

thick were stained using standard H&E methods [28]. Representative images of fibers stained 

with the above-described methods were obtained using a Leica SPE Confocal microscope. 

Images were collected across the z-plane at 1µm width and maximum projection images were 

generated using ImageJ software.    

 

Culture of trigeminal ganglion neurons 

Wild type mice were sacrificed by decapitation after nine days of treatment and the 

ipsilateral trigeminal ganglia (TG) were removed and cut into several pieces. Ganglia were 

incubated in 45U papain (Worthington, Lakewood, NJ) in 3 mL Hank’s buffered saline solution 
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without Ca2+ or Mg2+ and with 10 mM HEPES at 37°C, 5% CO2 for 20 minutes. TG were washed 

and then incubated in collagenase (1.5 mg/ml) for 20 minutes. TG were triturated with a fire-

polished Pasteur pipette, then passed through a 40μm filter, and the dissociated cells were plated 

on poly-D-lysine and collagen coated glass coverslips. Cells were cultured overnight in 

Neurobasal A media supplemented with B27, 100U/mL penicillin/streptomycin, 2 mM Glutamax, 

and 5% fetal bovine serum (Gibco). No additional growth factors were added to the media. All 

experiments were performed within 24 hours of plating.  

 

Whole-cell patch clamp electrophysiology 

For electrophysiology experiments, FastDiI (Sigma, St. Louis, MO.) was injected 

intradermally into the cheek of wild type mice on day 2 of AEW or water treatment to label 

trigeminal neurons innervating the skin at the treatment site. After seven additional days of AEW 

or water treatment to allow maximum retrograde labeling of trigeminal neurons, including 

sprouting terminals, trigeminal ganglia were cultured as described above. Retrogradely labeled 

trigeminal neurons from AEW- or water-treated mice were then identified using an Olympus BX-

50 epifluorescence microscope and subsequently examined for differences in membrane 

excitability. Cells were tested in an external recording solution consisting of (in mM): 145 NaCl, 3 

KCl, 2.5 CaCl2, 1.2 MgCl2, 7 Glucose, and 10 HEPES, adjusted to pH 7.4 with NaOH and 305 

mOsm with sucrose. Borosilicate, filamented glass electrodes with 2-5 MΩ resistance (Warner 

Instruments, Hamden, CT) contained internal solution (in mM): 130 K-gluconate, 5 KCl, 5 NaCl, 

3 Mg-ATP, 0.3 EGTA, 10 HEPES, adjusted to pH 7.3 with KOH and 294 mOsm with sucrose. 

After acquiring gigaseal and break-in, neurons were given 2 minutes to stabilize and then a series 

of protocols to determine membrane excitability were performed. Action potentials were evoked 

in current clamp mode using a series of increasing 1 second ramp current injections. The first 

action potential of a train was used to determine threshold, defined as the voltage at which the 

first derivative of the membrane potential increased by 10 V/s. Rheobase was established from 
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the step current pulse at which the first action potential was triggered. Data were collected with a 

HEKA EPC 10 amplifier, digitized at 20 kHz, and recorded on a PC running Patchmaster software 

(v2x-71). Series resistance was kept below 10 MΩ in all recordings and only DiI labeled cells with 

a diameter less than 30 µm were studied.  

 

Calcium imaging 

The protocol for calcium imaging was adapted from our previous studies [29-32]. Cells 

from wild type mice were incubated for 45 minutes in 3 μg/mL of the cell-permeant ratiometric 

calcium indicator Fura-2 AM (Molecular Probes) and then incubated in external solution (in mM): 

130 NaCl, 5 K, 2 CaCl2, 1 MgCl2, 30 Glucose, 10 HEPES for a 30 minute de-esterification prior to 

recording. Coverslips were positioned in a recording chamber and perfused with external solution 

at room temperature. Cells were viewed under an inverted microscope (Olympus Optical, Tokyo, 

Japan) and images were captured with a Hamamatsu Orca camera. Regions of interest 

encompassing all Fura-loaded cells were identified a priori and the ratio of fluorescence emission 

at an alternating excitation wavelength of 357 and 380 nm was recorded with SimplePCI Software. 

The experimental protocol consisted of a 2 minute baseline followed by 30 second bath 

application of 100 μM mustard oil (MO, Sigma, St. Louis), 8 minutes of external solution, 30 

seconds of 1mM chloroquine (CQ, Sigma, St. Louis), 8 minutes of external solution, and 10 

seconds of high KCl (50mM). Peak responses were determined by calculating the absolute 

increase in Fura-2 signal above baseline immediately prior to each stimulus. A change from 

resting level of ≥20% was set as the threshold for a response to a bath applied chemical. Cells 

unresponsive to high K+ were excluded from physiological analysis.  

 

Statistical analyses 

All statistical analyses were performed using GraphPad Prism 6.04 (2014). For 

comparisons between AEW-treated and water-treated scratching behavior, unpaired t-test was 
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used to compare the total scratch bouts or wipes per 60-minute interval. Electrophysiological data 

comparisons were performed using unpaired t-test. Differences between the proportion of 

responders in AEW and water groups were determined using a χ2 test. Peak calcium increase in 

response to stimuli was analyzed with unpaired t-test. For all statistical analyses, significance was 

defined as p<0.05. Data are presented as mean ± S.E.M.  

 

  



www.manaraa.com

59 
 

Results 

AEW-induced dry skin elicits scratching but not wiping behavior 

AEW treatment induced grossly visible, dry and scaly skin on the treated cheek of mice, 

whereas skin from water treated mice appeared unchanged (Figure 1A, B). AEW treatment also 

induced a hyperproliferation of keratinocytes resulting in thickening of the epidermis that was not 

observed in the water-only controls. The dry skin group was marked by spongiosis and large 

pieces of dissociating stratum corneum which still contained nucleated keratinocytes (Figure 1C, 

D). AEW treatment induced a significant increase in the number of site-directed bouts of 

scratching (H2O = 4.0 ± 2.3 scratch bouts, AEW = 60.7 ± 17.0 scratch bouts, unpaired t-test, 

p≤0.01; Figure 1E). In contrast, very little wiping behavior was observed in general and no 

difference in the number of wipes was observed between water-only and AEW treatment groups 

(H2O = 1.0 ± 0.8 wipes, AEW = 4.4 ± 1.7 wipes; unpaired t-test, Figure 1F). These results indicate 

that AEW-induced dry skin elicits ongoing itch without pain.  

 

Figure 1. Dry skin treatment induces itch without pain. A, B) Photographs of shaved mouse 
cheeks after treatment with water or acetone/ether and water. AEW treatment induced scaly, dry 
skin. C, D) H&E staining shows epidermal hyperplasia and hyperkeratosis in the AEW treated 
group but not in the water treated group. Stratum corneum still containing nucleated keratinocytes 
can be seen in the process of dissociating from the epidermis. Scale bar = 50µm. E, F) 
Quantification of the mean number of scratch bouts and wipes during 1 hour of observation after 
6 days of AEW treatment. AEW treatment greatly enhanced scratching (p< 0.01, unpaired t-test, 
water-treated n=9; AEW-treated n=11) but little wiping occurred and was not significantly different 
between water and AEW groups (n=5 each group, unpaired t-test). 
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Dry skin induces intraepidermal hyperinnervation independent of scratching 

To determine whether dry skin alters intraepidermal nerve fiber density (IENFD), we 

quantified fiber innervation in the cheek epidermis from AEW- and water-treated mice. IENFD 

was measured using an antibody against β-III tubulin, which is specific for neurons and labels 

axons and their terminals (Figure 2).[33] IENFD was significantly increased in the AEW-treated 

group compared to water-only controls (H2O = 26.8 ± 4.2 fibers/mm, AEW=44.1 ± 5.4 fibers/mm, 

n=5 animals per group, unpaired t-test, p<0.05) (Figure 2A - C).  

 

Figure 2. Dry skin induces intraepidermal hyperinnervation independent of scratching. A, 
B) Mice treated with acetone/ether and then water showed increased fiber innervation and 
epidermal hyperplasia compared to the water treated animals. Scale bar = 20µm. C) 
Intraepidermal fiber innervation was significantly increased by AEW treatment. D, E) Mice with 
Elizabethan collars placed at the start of treatment also showed increased fiber density and 
thickening of the epidermis. Scale bar = 20µm. F) No change in the magnitude of AEW-induced 
hyperinnervation relative to water-only controls was observed between collared and non-collared 
mice after AEW treatment.  
 
  Scratching itself is thought to promote itch via a positive-feedback loop known as the “itch-

scratch cycle”, and could alter fiber innervation. We sought to determine whether AEW-induced 

dry skin is itself capable of generating epidermal hyperinnervation, or whether scratching behavior 

was necessary to observe the increased IENFD. To this end, mice were fitted with Elizabethan 



www.manaraa.com

61 
 

collars to prevent scratching of the cheek for the duration of the AEW and water treatments. AEW-

treated mice that wore collars also showed an increase in IENFD (H2O = 45.5 ± 1.8 fibers/mm, 

AEW = 70.2 ± 1.7 fibers/mm, n=3 animals per group, unpaired t-test, p<0.001) (Figure 2D, E). 

The magnitude of hyperinnervation relative to water controls (Fold Change) was not different 

between the no collar and collar groups (no collar = 1.5 ± 0.2 fold increase relative to water, n=5 

animals; collar = 1.5 ± 0.04 fold increase relative to water, n=3 animals, unpaired t-test, p=0.89) 

(Figure 2F), indicating that AEW treatment induced epidermal hyperinnervation independent of 

scratching.  

 

Dry skin selectively induces hyperinnervation by Ret-positive, non-peptidergic fibers 

Both peptidergic and non-peptidergic fibers are present in the epidermis and may 

contribute to pruritus. However, βIII-tubulin is an indiscriminant marker of nerve fibers. Therefore, 

to determine the subsets of sensory fibers that are increased in AEW-induced dry skin, peptidergic 

fiber density was assessed with an anti-CGRP antibody. There were no significant changes in 

CGRP-positive IENFD in the dry skin group when compared to water controls (H2O = 10.2 ± 1.4 

fibers/mm, AEW = 8.9 ± 2.1 fibers/mm, n = 5 animals per group, unpaired t-test, p=0.62) (Figure 

3A - C). Ret-EGFP reporter mice were used to identify Ret-positive (non-peptidergic) fibers, which 

were visualized using an anti-GFP antibody.[24] The density of Ret-positive epidermal fibers was 

significantly increased in the dry skin group (H2O = 40.2 ± 1.1 fibers/mm, AEW = 70.1 ± 7.6 

fibers/mm, n = 4 animals per group, unpaired t-test, p<0.01) (Figure 3D – F). A small subset of 

fibers that express both peptidergic and non-peptidergic markers can be identified by their 

expression of the artemin co-receptor GFRα3.[34] Intraepidermal fiber density of these fibers was 

quantified using an antibody directed against the GFRα3 receptor and no change in innervation 

after AEW treatment was observed (H2O = 16.0 ± 1.2 fibers/mm, AEW = 14.9 ± 2.0 fibers/mm, n 

= 4-5 animals per group, unpaired t-test, p=0.68) (Figure 3G-I). These data suggest that dry skin 
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induces branching and extension of non-peptidergic, Ret-positive epidermal fibers, which may be 

important for the development or maintenance of dry skin-induced itch. 

 

Figure 3. Hyperinnervation of Ret+, but not CGRP+ or GFRα3+ fibers after AEW treatment. 
A, B) Intraepidermal CGRP+ fibers appeared no different in the AEW and water groups. Scale 
bar = 20µm. Arrowheads indicate large pieces of dissociating stratum corneum which still 
contained nucleated keratinocytes. C) Quantification of CGRP+ density. D, E) Photomicrographs 
from a strain of mice in which eGFP is expressed from the Ret locus. eGFP immunostained fibers 
in the cheek epidermis show increased fiber density after AEW-treatment. Scale bar = 20µm. F) 
Quantification of Ret+ fiber density. G, H) IENFD of GFRα3+ fibers was not different between 
AEW and water groups. I) Quantification of GFRα3+ density.  
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We determined the proportion of trigeminal 

neurons projecting to the skin that were also Ret-

positive by intradermal cheek injection of the 

retrograde tracer DiI into untreated Ret-EGFP 

mice. Trigeminal ganglia were harvested and 

cultured and we found that the majority of 

retrogradely labeled neurons were also Ret-

positive (Figure 4A, B). Of all retrogradely labeled 

neurons, we found that 70.4 ± 4.1% were Ret-

positive (Figure 4C). Additionally, when tested for 

physiological responses to KCl, we found that 92.4 

± 2.7% of the KCl-responsive, DiI-positive cells 

were also Ret-positive (Figure 4C). This increased 

proportion of viable Ret-positive skin-projecting 

neurons suggests a small loss of Ret-negative 

neurons in culture.  

 

Effects of dry skin on trigeminal neuron 

physiology 

We hypothesized that AEW treatment could alter the membrane excitability of trigeminal 

neurons innervating the dry skin. We specifically targeted neurons with known peripheral 

projections by retrogradely labeling trigeminal neurons with DiI injected into the cheek skin of 

C57BL/6 AEW- and water-treated mice (Figure 5A). Whole-cell patch clamp electrophysiology 

was then used to assess changes in membrane excitability. Rheobase was assessed using a 

short step and action potential threshold was determined with the first spike evoked from a ramp 

current (Figure 5B, C). Resting membrane potential of trigeminal neurons was not significantly 

 
Figure 4. Retrograde labeling of 
trigeminal afferent fibers innervating 
the cheek. A, B) Two injections of DiI 
(10 uL each) into the cheek of an 
untreated Ret-EGFP mouse 
retrogradely labeled trigeminal ganglion 
neurons that were later cultured. Arrows 
show double-labeled neurons. C) 70.4 ± 
4.1% of all DiI+ neurons were also Ret + 
(n=10 coverslips, each circle represents 
% per coverslip); 92.4 ± 2.7% KCl-
responsive, DiI+ neurons were also 
Ret+ (n=5 coverslips). Total of 3 Ret-
eGFP mice used.  
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different between AEW- and water-treated mice (H2O = -60.8 ± 2.7 mV, n=14 neurons, AEW = -

57.2 ± 2.5 mV, n=15 neurons, unpaired t-test) (Figure 5D), and neither group showed 

spontaneous activity. There was also no significant difference in the current amplitude required 

to elicit an action potential between AEW- and water-treated animals (H2O = 614.3 ± 70.4 pA, 

n=15; AEW = 453.3 ± 50.0 pA, n=15, unpaired t-test) (Figure 5E). Action potentials evoked by a 

ramp current injection showed no difference between AEW and water treatment groups in the 

threshold for activation (H2O = -8.7 ± 3.7 mV, n=10; AEW = -3.8 ± 1.9 mV, n=12, unpaired t-test) 

(Figure 5F). Together, these data show that dry skin treatment did not produce ongoing activity 

or changes in membrane excitability that could be determined in vitro.  

 

Figure 5. Electrophysiology of AEW- and water-treated trigeminal neurons. A) 
Photomicrograph of a patched wild type trigeminal neuron retrogradely labeled from the cheek 
with DiI. (Scale bar = 30μm) B) Example trace of a short step protocol and evoked action potential 
to determine rheobase. C) Example traces of the ramp current and evoked action potentials from 
AEW- and water-treated trigeminal neurons. D) Resting membrane potential, E) Rheobase, and 
F) Action potential threshold were not different between AEW- and water-treated groups.   
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We next determined whether AEW-induced dry skin altered the responses of pruritic 

receptors and pruriceptive neurons. Trigeminal ganglion neurons from AEW- and water-treated 

wild type C57BL/6 mice were harvested, cultured, and loaded with Fura2-AM (Figure 6A). Wilson 

et al., (2013) showed that TRPA1 is crucial for dry skin-induced itch and that MrgprA3 mRNA is 

upregulated in sensory neurons after AEW treatment. To determine whether corresponding 

functional changes occur in trigeminal neurons, intracellular calcium was monitored to test the 

responses to the TRPA1 agonist mustard oil (MO) and non-histaminergic pruritogen chloroquine 

(Figure 6B). We observed no significant difference between AEW- and water-treated groups in 

the proportion of MO-responsive neurons (H2O = 89/1042 cells (8.54%), AEW = 107/1199 cells 

 
Figure 6. Increased calcium responses to chloroquine in AEW-treated trigeminal 
neurons in vitro. A) Image of Fura-2AM loaded trigeminal neurons with responses shown in 
B. (Scale bar = 50μm) B) Example traces of mustard oil (MO, 100 μM) and chloroquine (CQ, 
1 mM) responders, and a chloroquine responder without mustard oil sensitivity. C) 
Quantification of the proportion of neurons responsive and magnitude of the response to 
mustard oil from AEW- and water-treated animals. D) AEW increased the proportion of neurons 
responsive to chloroquine but did not alter the magnitude of the response.  
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(8.92%), χ2 test, p=0.81), or in the peak amplitude of the MO response (H2O = 101.4 ± 7% above 

baseline, AEW = 112.7 ± 6% above baseline, unpaired t-test, p=0.24) (Figure 6C). On the other 

hand, the proportion of CQ-responsive neurons in AEW-treated animals was significantly 

increased by 27.2% (H2O = 127/1042 cells (12.19%), AEW = 186/1199 cells (15.51%), χ2 test, 

p<0.05) (Figure 6D). Peak calcium responses to CQ were not different between the two groups 

(H2O = 73.4±4% above baseline, AEW = 68.7±3% above baseline, unpaired t-test, p=0.34).  

Most MO-responsive neurons also responded to CQ regardless of treatment (H2O = 77/89 

(86.5%), AEW = 93/107 (86.9%), χ2 test, p=1). Of the CQ-responsive neurons, most responded 

to MO in the water-treated group (77/127, 60.6%), while in the AEW group, half of CQ-responsive 

neurons responded to MO (93/186, 50.0%). Therefore, a large proportion of CQ-responsive 

neurons did not respond to MO. We tested whether the proportion of CQ-responsive neurons that 

did not respond to MO was increased in the AEW group, but this did not reach significance (χ2 

test, p=0.066). 
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Discussion 

Dry skin pruritus is a common problem and is often associated with other dermatoses. 

Here we show that persistent dry skin induced both pruritus and epidermal hyperinnervation in 

mice. We found that Ret-positive fibers contributed to the increased fiber density, but peptidergic, 

CGRP-positive and GFRα3-positive fibers did not. Moreover, preventing scratching of the affected 

area did not prevent dry skin-induced hyperinnervation. To understand whether sensitization or 

ongoing activity of sensory neurons contributes to persistent dry skin pruritus, we performed in 

vitro recordings from trigeminal neurons that were determined to have innervated the treated skin. 

No evidence was found supporting the hypothesis that altered membrane excitability was 

responsible for persistent dry skin itch. On the other hand, AEW treatment produced an increase 

in the proportion of trigeminal neurons responsive to the histamine-independent pruritogen 

chloroquine, supporting the concept that the Mrgpr family of receptors is upregulated and 

functionally contributes to persistent dry skin itch.   

In this study, AEW treatment of the cheek skin evoked scratching, but not forelimb wiping, 

indicating the treatment produced ongoing itch without pain. A common feature in the affected 

skin of patients with pruritic disease is increased epidermal innervation [9-11, 35]. Likewise, 

increased fiber growth in the murine epidermis after AEW treatment has been noted [12, 13]. 

Here, persistent AEW treatment increased total epidermal fiber density by 65%, as indicated by 

the pan-neuronal marker βIII-tubulin. We tested the possibility that mechanical stimulation from 

scratching contributed to the fiber growth. When Elizabethan collars were fitted to prevent 

scratching, intraepidermal innervation was still greater than in water-treated skin. The relative 

increase did not differ from the hyperinnervation observed in the AEW-treated animals without 

collars. These results demonstrate that dry skin itself is sufficient to induce hyperinnervation 

without the presence of scratching.   

In addition to hyperinnervation, histological studies of patients with atopic dermatitis or 

psoriasis indicate that itch severity correlates positively with nerve growth factor (NGF) in the skin 
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and the NGF-receptor TrkA in nerve fibers [9, 35-38]. Increased epidermal fibers and expression 

of NGF have been observed in a mouse model of atopic dermatitis [39, 40], and in mice with acute 

acetone-induced skin barrier dysfunction [12, 13]. While the specific contribution of 

hyperinnervation to itch sensation is not clear, these observations suggest the idea that 

peptidergic, TrkA-positive fibers may be important regulators of atopic and dry skin pruritus. The 

present study shows that repeated AEW treatment resulted in persistent dry skin itch, but we 

observed no increase of the CGRP-positive or GFRα3-positive fibers which likely express TrkA 

[34]. This may be due to differences between the biology underlying human atopic dermatitis and 

mouse models of acute dry skin. Our data do not rule out the possibility of functional contributions 

to dry skin itch from the CGRP-positive or GFRα3-positive subset of fibers or other peptidergic 

fibers, and it should be noted that fiber sprouting is not a prerequisite for sensory neurons to signal 

itch.  

A majority of the fibers innervating the epidermis are non-peptidergic and express the 

receptor tyrosine kinase for the GDNF family of neurotrophic factor ligands, Ret, rather than TrkA 

[24, 41]. GDNF release from skin keratinocytes and fibroblasts was recently acknowledged to 

play an important role in sensory neurite outgrowth in vitro with implications for pruritus [42]. 

Artemin, which activates Ret and GFRα3, is increased in human atopic skin and artemin-treated 

mice displayed increased sprouting of peripheral nerve fibers and itch-like behaviors [43]. 

Likewise, an increase in GFRα3 immunostained fibers was found in artemin over-expressing mice 

[25, 26]. However, in the AEW model of dry skin no sprouting of GFRα3-positive fibers was 

observed. Neurturin is another potentially interesting GDNF family ligand but its role in pruritus is 

currently unknown. The Mrgpr family of histamine-independent receptors has been shown to be 

selectively localized to Ret-positive DRG neurons and is expressed in epidermal nerve terminals 

[17, 18, 41, 44, 45]. Our results show that AEW treated skin resulted in a significant increase in 

Ret-positive fibers penetrating into the epidermis. This suggests that Ret-positive, non-peptidergic 

fibers could play a role in itch induced by dry skin.  
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The functional mechanisms engaged by pruriceptive sensory neurons to produce itch in 

dry skin conditions remain unresolved, but are thought to be independent of histamine signaling. 

Anti-histamines are generally not effective for treating chronic itch, including itch from dry skin [2, 

46]. Furthermore, mast cell-deficient mice exhibit normal scratching after AEW treatment, 

indicating that factors released from mast cells are unlikely to generate the itch from dry skin [3]. 

Recent studies have pointed to the involvement of specific non-histaminergic mechanisms for dry 

skin itch. For example, ablation of the chloroquine-activated MrgprA3-expressing subset of 

sensory neurons drastically reduced AEW-induced scratching [17]. Also, in vivo recordings from 

spinal dorsal horn neurons showed enhanced responses to non-histaminergic pruritogens after 

AEW treatment, but not to histamine [47]. Taken together, these studies support the idea that dry 

skin pruritus signals through a non-histaminergic pathway. 

Several signaling pathways for histamine-independent itch have now been identified. 

Scratching in mice deficient for TRPA1 was greatly reduced after chloroquine or AEW treatment, 

suggesting an important role for TRPA1 in non-histaminergic itch [7, 19]. Moreover, AEW 

treatment increased the message for MrgprA3 in both skin and sensory neurons [7]. MrgprA3, 

which functionally couples to TRPA1, is present on Ret-positive neurons, suggesting that dry skin 

itch involves non-peptidergic fibers [17]. Although TRPA1 was initially shown to be expressed in 

peptidergic sensory neurons [48], recent data have demonstrated robust modulation of TRPA1 

function in Ret-positive neurons and TRPA1 expression in non-peptidergic IB4-positive fibers that 

innervate the epidermis [25, 26, 49-52]. While the hyperinnervation of Ret-positive neurons is 

consistent with a potential role in dry skin itch, functional studies are necessary to determine 

whether changes in neural sensitization or receptor expression occur after AEW treatment.  

To gain insight into the functional changes of potential pruriceptive neurons exposed to 

dry skin, we hypothesized that locally released inflammatory mediators or neurotrophic factors 

act directly on pruriceptive sensory neurons to induce sensitization. Peripheral sensitization could 

explain the hyperknesis (heightened itch) and alloknesis (itch produced by a non-itchy stimulus) 
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commonly associated with pruritic diseases. To target neurons that directly innervated the treated 

skin, we performed whole-cell recordings from trigeminal ganglion neurons retrogradely labeled 

from the cheek skin of animals exposed to AEW or water treatment. With this strategy, we found 

no evidence for sensitization of trigeminal neurons in the AEW versus water-treated groups. It is 

possible that culture conditions reset differences that may have existed in vivo and future studies 

to examine the excitability of sensory fibers may yield different results. It is also possible that dry 

skin is associated with changes in excitability that are more pronounced at the fiber terminals in 

the skin and these did not translate into our in vitro studies of sensory neuron cell bodies. On the 

other hand, previous studies have shown that manipulations in vivo have produced altered 

sensory neuron physiology in vitro [53-55]. 

To test whether changes occur in the expression of functional pruritic receptors, we 

examined receptor-mediated responses to mustard oil and chloroquine in cultured trigeminal 

neurons from AEW- and water-treated animals. Interestingly, we found that AEW treatment 

expanded the population of sensory neurons with functional responses to chloroquine. In contrast, 

we found that responses to mustard oil were no different between AEW- and water-treated 

animals. These results mirror data showing an increase in mRNA for MrgprA3, but not TRPA1, in 

AEW-treated animals [7]. Overall, we found that ~10 percent of trigeminal neurons responded to 

mustard oil, which is consistent with the expression of TRPA1 in sensory ganglion in several 

reports [56-58]. While other studies have shown as many as 25% of sensory neurons are TRPA1-

positive, TRPA1 expression can vary by innervation target, exposure to growth factors, and 

changes in other experimental methods [21, 48, 51]. Interestingly, many of the neurons that 

responded to chloroquine after AEW showed no mustard oil responses at all, suggesting that the 

MrgprA3 receptor may couple to other channels in addition to TRPA1. In favor of this idea, 

MrgprA3 was recently found to modulate TRPM8, TRPC, and TRPV1 [59]. Additionally, TRPV3-

deficient mice exhibited greatly reduced scratching after AEW treatment compared to water-



www.manaraa.com

71 
 

treated controls, indicating that other mechanisms in addition to TRPA1 may account for AEW-

induced scratching [14].  

In summary, our results show that dry skin-induced pruritus is associated with non-

peptidergic fiber growth into the epidermis and an expanded population of sensory neurons 

responsive to the non-histaminergic pruritogen chloroquine. Although sprouting of peptidergic, 

TrkA-positive fibers is observed in the skin of patients with atopic dermatitis and other 

dermatoses, our results suggest that non-peptidergic fibers may also play a role in chronic itch 

related to xerosis and compromised barrier integrity. Dry skin-induced itch, which particularly 

affects the older population and often co-exists with other dermatoses, may be improved by 

topical treatment directed at prevention of Ret-positive neural sprouting in the epidermis.  
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Chapter 4 

Neurotrophic factors selectively modulate pruritogen-evoked itch  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is adapted from the following manuscript: 
Valtcheva MV, Golden JP, Sheahan TD, Pullen MY, Vogt SK, Jain S, Davidson S, Gereau RW. 
Neurotrophic factors selectively modulate pruritogen responses in mouse but not human sensory 
neurons. 2016. In Preparation.   
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Abstract 

Neurotrophic factors such as nerve growth factor (NGF) and the glial cell line-derived 

neurotrophic factor (GDNF) family of ligands (GFLs) regulate innervation and directly sensitize 

nociceptors, but little is known about their role in itch. Studies of skin samples from patients with 

chronic itch conditions such as atopic dermatitis and psoriasis demonstrate increased 

intraepidermal nerve fiber density, increased artemin, and increased NGF and its receptor TrkA. 

We tested the hypothesis that neurotrophic factors (NTFs) can modulate pruritogen-induced itch. 

We investigated whether NGF and the GFLs GDNF, neurturin, and artemin can directly induce or 

modulate histaminergic and non-histaminergic itch. Intradermal injection of NTFs into the cheek 

skin of mice did not induce spontaneous scratching or wiping behavior, indicating that NTFs alone 

do not induce pain or itch. Acute pretreatment with NGF selectively potentiated histamine-induced 

scratching. On the other hand, artemin enhanced chloroquine-evoked itch, but reduced histamine-

induced scratching. We studied dissociated trigeminal ganglion neurons from Ret-eGFP reporter 

mice to examine the effects of NGF and artemin on calcium responses to pruritogens and 

transient receptor potential (TRP) channel agonists. The vast majority of histamine- and 

chloroquine-responsive neurons were Ret-positive. Overnight incubation with NGF significantly 

increased the number of histamine responders. Both acute and overnight treatment with artemin 

increased the proportion of chloroquine-responsive neurons. We also found that TrkAF592A 

mutation resulted in altered TrkA signaling that produced an analgesic phenotype, but had no 

effect on histamine- or chloroquine-induced itch. Our findings indicate that NGF and artemin have 

select roles in the regulation of pruritogen-evoked itch. Additionally, TrkA signaling may not play 

a prominent role in the maintenance of pruriceptors in adulthood. These findings support the role 

of NTFs as regulators of histaminergic and histamine-independent itch. 
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Introduction 

Itch, or pruritus, is mediated primarily by small diameter primary afferents that innervate 

the skin and mucosa [1]. Pruriceptive nerve endings exist in close proximity to keratinocytes, 

dermal fibroblasts, and immune cells in the skin, which can release pruritogens, pro-inflammatory 

mediators, and neurotrophic factors (NTFs) that directly modulate primary afferent responses and 

receptor expression [1-7]. NGF and the GDNF family ligands (GFLs) regulate the development, 

morphology, target innervation, and physiology of peptidergic and non-peptidergic sensory 

neurons [8-12]. Previous studies indicate that a large proportion of neurons expressing pruritogen 

receptors also express TrkA and Ret, the tyrosine kinase receptors activated by NGF and GFLs, 

respectively [13-16]. NGF and the GFLs directly sensitize the transient receptor potential (TRP) 

channels TRPV1 and TRPA1, and can increase their expression in primary afferents [17-21].  

Histamine-evoked itch and sensory neuron responses are dependent on TRPV1 [20, 22, 23]. On 

the other hand, itch evoked by chloroquine is functionally dependent on TRPA1 [19, 21, 22]. 

These findings suggest that neurotrophic growth factors may play an important role in regulating 

normal and pathological itch.  

Pruritic skin diseases are marked by epidermal hyperplasia and increased inflammatory 

cell infiltration, which contribute to increased local levels of inflammation and NTFs. Studies of 

patients with atopic dermatitis and psoriasis have demonstrated that the severity of itch correlates 

with increased levels of nerve growth factor (NGF) in the skin and its receptor TrkA in epidermal 

nerve fibers [24-27]. A recent study also found that artemin, a glial cell line-derived neurotrophic 

factor (GDNF) family ligand, is increased in the skin of patients with atopic dermatitis [28]. In 

addition, intradermal injection of NGF in human subjects enhanced itch produced by the non-

histaminergic pruritogen cowhage [29], while intravenous administration of artemin for the 

treatment of sciatica resulted in frequent reports of pruritus [30, 31], further supporting a role for 

NTFs in the modulation or generation of itch.  

Neurotrophic factors are critical in the control of epidermal innervation, and epidermal 
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hyperinnervation is another common feature of pruritic skin diseases [27, 32, 33]. Indeed, cultured 

keratinocytes from patients with atopic dermatitis increased local NGF levels relative to healthy 

keratinocytes and produced greater axon growth in co-cultures with porcine sensory neurons [34]. 

TrkA inhibition in a mouse model of atopic dermatitis reduced both dermatitis-associated 

hyperinnervation and scratching behavior [35]. In addition, we recently found that the acetone-

ether-water model of dry skin itch is associated with epidermal hyperinnervation by Ret-positive 

fibers [36], suggesting a role for both NGF and the GDNF family ligands (GFLs) in the regulation 

of epidermal innervation in the context of itch. 

In this study we investigated the roles of the major peripheral NTFs in regulating the 

responses of sensory neurons to histamine and the histamine-independent pruritogen 

chloroquine. Using a TrkA receptor mutant, we further investigated whether endogenous growth 

factor signaling contributes to normal itch sensation and functional pruritogen receptor expression 

in trigeminal ganglion neurons.  

 

Materials and Methods 

Animals 

All experiments were conducted in accordance with the National Institutes of Health guidelines 

and received the approval of the Animal Care and Use Committee of Washington University in 

St. Louis, School of Medicine. Adult (8-12 week old) male littermate mice were housed on a 12 

hour light-dark cycle and allowed ad libitum access to food and water. The effects of nerve growth 

factor (NGF) and the GDNF family ligands GDNF, neurturin, and artemin on spontaneous and 

pruritogen-induced scratching behavior were tested in C57BL/6 (Jackson lab) male littermates. 

Heterozygous Ret-EGFP reporter animals were used to test the effects of neurotrophic factors on 

pruritogen responses in vitro [10, 37]. Homozygous TrkAF592A mutants (a generous gift from Dr. 

Wenqin Luo) and wild type littermates were obtained from heterozygous breeding pairs [38]. 
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Males aged 8 to 12 weeks were used for all behavior experiments. Males and females were used 

for calcium imaging and immunohistochemistry experiments.  

 

Pruritogen-induced scratching behavior 

Because of the well-established role of NTFs in pain sensitization, the cheek assay was 

used to differentiate between itch- and pain-specific effects of NTFs on behavioral responses to 

pruritogens [39]. At least one day prior to the start of behavior experiments, the cheek skin was 

shaved with electric clippers. On the day of experiment, animals were placed in individual 

plexiglass observation chambers and allowed to acclimate in the presence of white noise for 2 

hours. Using gentle restraint, animals were treated with a growth factor (0.2μg/10µl 0.9% normal 

saline solution) or vehicle (0.9% normal saline solution) by direct intradermal injection into the 

cheek skin using a 29½ gauge needle and 3/10cc insulin syringe. Neurotrophic growth factors 

used were: Nerve Growth Factor (Harlan), and GDNF, neurturin, artemin (R&D Systems). 

Behavioral responses were recorded immediately following injection using a video camera, and 

scratching and wiping behavior was scored at a later time by observers blinded to treatment. A 

single bout of scratching was defined as any number of individual scratch events separated by 

licking or biting of the hind-limb, holding the limb motionless, or putting the limb down on the 

surface. Wiping behavior indicating pain was defined as a rostrally-directed movement of the 

ipsilateral forelimb across the cheek starting from the ear [39, 40]. One hour after pre-treatment, 

animals were injected into the cheek skin with a pruritogen (histamine (1mg/10μl, Sigma) or 

chloroquine (200µg/10µl, Sigma)). Pruritogen-induced scratching and wiping responses were 

video recorded for 30 minutes immediately after injection and scored at a later time by observers 

blinded to pre-treatment. The number of scratch bouts from both treatment and vehicle groups 

were normalized to the vehicle mean for the day.  For TrkA mutant experiments, 8-12 week old 

TrkAF592A males and their wild type littermates were injected with histamine (500µg/10µl) or 
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chloroquine (200µg/10µl). Behavior was recorded and scored at a later time by experimenters 

that were blinded to mouse genotype.  

 

Primary trigeminal ganglion cultures and calcium imaging 

Experiments were performed using 8-12 week old Ret-EGFP reporter mice (C57BL/6) 

obtained from Dr. Sanjay Jain [37]. For TrkA mutant experiments, 8-12 week old homozygous 

TrkAF592A mutants and their wild type littermates were used. Animals were sacrificed by 

decapitation and both trigeminal ganglia (TG) were carefully removed and cut into several pieces. 

TG were incubated in papain (15U/ml) (Worthington, Lakewood, NJ) in Hank’s buffered saline 

solution without Ca2+ or Mg2+ and with 10 mM HEPES at 37°C, 5% CO2 for 20 minutes. TG were 

washed and then incubated in collagenase (1.5 mg/ml) for 20 minutes. TG were triturated with a 

fire-polished Pasteur pipette, passed through a 40μm filter to separate large debris, and the 

dissociated cells were plated on poly-D-lysine and collagen-coated glass coverslips. Cells were 

cultured overnight in Neurobasal A medium supplemented with B27, 100U/mL 

penicillin/streptomycin, 2 mM Glutamax, and 5% heat-inactivated fetal bovine serum (Gibco). No 

additional growth factors were added to the media unless otherwise stated for specific 

experiments. All calcium imaging recordings were performed within 24 hours of plating. For 

experiments using Ret-EGFP animals, two animals were sacrificed per experiment and all four 

trigeminal ganglia were pooled prior to plating the cells. Alternating coverslips were treated with 

NTF (100ng/ml) or vehicle. At least two experiments (n=4 animals) were used per study. For TrkA 

mutant experiments, TG from one mutant and one age-matched wild type littermate were cultured 

simultaneously, but maintained separately. 

The protocol for calcium imaging was adapted from our previous studies [41-44]. TG 

neurons from Ret-EGFP mice were incubated for 45 minutes in 3 μg/mL (3µM) of the cell-

permeant ratiometric calcium indicator Fura-2 AM (Molecular Probes) and then incubated in 

external solution (in mM): 130 NaCl, 5 K, 2 CaCl2, 1 MgCl2, 30 Glucose, 10 HEPES for a 20-
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minute de-esterification prior to recording. Coverslips were positioned in a recording chamber and 

continuously perfused with external solution at room temperature. Cells were viewed using an 

inverted microscope (Olympus Optical, Tokyo, Japan) and images were captured with a 

Hamamatsu Orca camera. Regions of interest encompassing all Fura-2-loaded cells were 

identified a priori and the ratio of fluorescence emission at an alternating excitation wavelength of 

357 and 380 nm was recorded with SimplePCI Software. The experimental protocol consisted of 

a 2-minute baseline measurement followed by bath application of the following stimuli 

(concentration, application duration, source): histamine (100 μM, 30 seconds, Sigma, St. Louis), 

chloroquine (1mM, 30 seconds, Sigma, St. Louis), capsaicin (200nM, 20 seconds, Sigma, St. 

Louis), mustard oil (100µM, 30 seconds, Sigma, St. Louis). Each stimulus application was 

followed by a wash with external solution for at least 8 minutes prior to subsequent stimulus 

applications. All experiments were concluded with a 10 second application of 50mM KCl to identify 

live neurons. Peak responses were determined by calculating the absolute increase in 357/380nm 

emission ratio above baseline (the average fluorescence measured in the 30 seconds 

immediately prior to stimulus application). A change from baseline ≥10% was set as the threshold 

for a response. Cells that did not respond to KCl were excluded from physiological analysis. Prior 

to recording, an image of EGFP-expressing neurons was captured. During data analysis, the 

EGFP image was overlayed with the regions of interest from the recording to identify which 

histamine- and chloroquine-responsive neurons were Ret-positive.  

 

Heat, Mechanical, and Cold Thresholds 

All behavioral experiments were completed between 8 AM and 6 PM. All animals were 

individually tested in clear plexigalss observation boxes after a 2-hour acclimation period in the 

presence of white noise. Experimenter was blinded to mouse genotype. Heat withdrawal latency 

was determined using the Hargreaves assay (Model 390 Series 8, IITC Life Science Inc.) 

performed on a glass plate maintained at 30°C [45]. Paw withdrawal latencies were determined 
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using a radiant heat stimulus set at 15% active intensity and 3% inactive intensity. Stimulus cut-

off was set to 20 seconds to avoid tissue injury. Five independent measurements were obtained 

for each paw, and consecutive trials on the same paw were separated by at least 15 minutes.  

To determine the 50% withdrawal threshold to mechanical stimuli, von Frey filaments were 

applied using the up-down method [46]. Calibrated von Frey filaments (North Coast Medical) were 

pressed against the hind paw skin between the anterior and posterior footpads until the filament 

just bent. A response was counted when a mouse lifted its hind paw away from the applied 

filament. Three trials were performed to determine the average withdrawal threshold (g) for each 

animal.  

Cold sensitivity was determined using the cold plantar assay [47]. Animals were 

acclimated on top of a ¼ inch glass plate. Finely crushed dry ice was tightly packed into a modified 

10 ml syringe to make a cold probe 1 cm in diameter. The cold probe was then applied to the 

glass beneath the hind paw and withdrawal latency was measured with a stopwatch. Three trials 

were conducted on each paw and consecutive trials to the same paw were separated by at least 

15 minutes. Stimulus cut-off of 20 seconds was used to prevent tissue damage.  

 

Immunohistochemistry 

TrkAF592A homozygous mice and wild type littermates were deeply anesthetized (ketamine-

xylazine-acepromazine: 38-1.92-0.38 mg/mL; 2.7 mL/kg), footpad skin was removed, and animals 

were perfused transcardially with phosphate-buffered saline followed by 4% paraformaldehyde 

solution. Footpads were immersion-fixed in Zamboni’s fixative overnight, rinsed in PBS, and 

cryoprotected in 30% sucrose. L4 DRG were dissected and cryoprotected in 30% sucrose. Tissue 

was embedded in optimal cutting temperature (OCT) compound and flash frozen on dry ice. 

Sections were cut on a cryostat at a width of 18µm (DRG) and 30 µm (footpad skin), and collected 

on glass slides. For immunostaining, tissue was post-fixed on the slide in 4% PFA for 5 minutes, 

washed with TBS, and blocked using 1% BSA and 0.05% TritonX-100. Sections were then 
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incubated in primary antibody diluted in Tyramide Signal Amplification (TSA) reagent overnight at 

4°C in a humidified chamber. Antibodies and dilutions used: rabbit anti-βIII tubulin (1:1000, 

Covance), goat anti-CGRP (1:350-1000, AbD Serotec), Alexa Fluor 488/555 donkey anti-rabbit 

(1:200-400, Invitrogen), Alexa Fluor 488 donkey anti-goat (1:200-350, Invitrogen). Slides were 

sealed with ProLong Gold with DAPI (Molecular Probes).  

Intraepidermal fiber density of the footpad skin was determined using previously described 

methods [10, 48]. MetaMorph Software (Molecular Devices, Sunnyvale, CA) was used to measure 

the length of the dermal-epidermal border. In each examined section, labeled fibers crossing the 

dermal-epidermal border were counted on an upright epifluorescent microscope (Nikon 80i; 

CoolSnapES camera). For each animal, six sections separated by >90µm were analyzed by a 

blinded experimenter and the mean fiber density per animal was calculated. Representative 

images of fibers stained with the above-described methods were obtained using a Leica SPE 

Confocal microscope. Images were collected across the z-plane at 1µm width and maximum 

projection images were generated using ImageJ software.   

 

Statistical analyses 

All statistical analyses were performed using GraphPad Prism 6.04 (2014). For 

comparisons of scratching behavior, unpaired t-test was used to compare the total scratch bouts, 

wipes, or normalized scratch bouts. For calcium imaging experiments, differences between the 

proportion of responders in each treated group were determined using a χ2 test, where each cell 

counted as an individual observation. Peak calcium increase in response to stimuli was analyzed 

using unpaired t-test. For all statistical analyses, significance was defined at p<0.05. Data are 

presented as mean ± S.E.M or overall proportion of responders (%).  
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Results 

Neurotrophic factors selectively modulate scratching responses to pruritogens 

Acute administration of neurotrophic factors can directly sensitize noxious responses to 

heat, cold, mechanical, and chemical stimuli [18, 49, 50]. To determine if neurotrophic factors can 

also acutely potentiate scratching responses to pruritogens, NGF, GDNF, neurturin (NRTN), or 

artemin (ARTN) were injected into the cheek skin of wild type mice. Scratching and wiping 

behavior was recorded immediately after growth factor injection to determine the direct effects of 

neurotrophic factors on spontaneous pain- and itch-specific behaviors. There were no significant 

differences in scratching or wiping behavior between the vehicle- and neurotrophic factor-treated 

groups, indicating that acutely administered NGF, GDNF, neurturin, or artemin alone do not 

directly induce pain or itch (Figure 1). To determine the effects of neurotrophic factors on 

histamine-dependent itch, one hour after NTF treatment all animals were injected with histamine 

 
Figure 1. Neurotrophic factors do not induce spontaneous itch or pain. A. Scratch bouts 
measured immediately after intradermal injection with neurotrophic factor (0.2µg/10µl) or 
vehicle (10µl 0.9% NaCl) (N=6-8 animals/group, t-test, p=NS). B. Wipes were measured 
immediately after NTF or vehicle injection.  
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into the cheek skin. NGF pre-treatment significantly potentiated histamine-induced scratching 

behavior (Figure 2A), but did not affect wiping. GDNF and neurturin administration did not affect 

histamine-induced scratching or wiping (Figure 2B, C). Pre-treatment with artemin significantly 

reduced histamine-induced scratching (Figure 2D), but did not affect wiping behavior. The effects 

of neurotrophic growth factors on histamine-independent itch were determined using the 

pruritogen chloroquine. One-hour pre-treatment with NGF, GDNF, and neurturin did not affect 

scratching or wiping behavior induced by chloroquine (Figure 2E-G). On the other hand, artemin 

 
Figure 2. Neurotrophic factors modulate scratching responses to pruritogens.  
A. Histamine-induced scratching was potentiated by NGF pre-treatment. B-C. GDNF and 
neurturin had no effect on histamine responses. D. Artemin pre-treatment reduced the total 
scratch bouts evoked by histamine. E-G. Chloroquine-induced scratching was not changed 
by NGF, GDNF, or neurturin. H. Artemin significantly potentiated chloroquine-evoked 
scratching responses. (N=7-10 per group, t test, *p<0.05, **p<0.01) 
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pre-treatment significantly potentiated chloroquine-induced scratching responses, with no effect 

on wiping behavior (Figure 2 H). These findings indicate that acutely applied NGF and artemin 

selectively modulate histaminergic and histamine-independent itch.  

 

NGF and artemin directly modulate sensory neuron responses to pruritogens 

To further investigate the mechanisms by which NGF and artemin potentiate itch, we used 

ratiometric calcium imaging to study trigeminal sensory neuron responses to pruritogens in the 

presence of these growth factors. A large proportion of chloroquine-responsive neurons express 

MrgprA3 and represent a specific subset of primary afferents that express both the peptidergic 

marker CGRP and the nonpeptidergic markers IB4 [13]. We utilized Ret-EGFP reporter mice to 

better characterize Ret expression in the subsets of functionally-identified histamine- and 

chloroquine-responsive neurons (Figure 3A-B). 

The effects of NGF on histamine responses were measured after acute 1-hour incubation 

or overnight incubation in NGF (100ng/ml) or vehicle. Because TRPV1 is activated downstream 

of histamine receptor activation and plays a key role in histaminergic itch, responses to capsaicin 

were also measured (Figure 3C). Of histamine-responsive neurons in the vehicle group, 80.3% 

were Ret-positive (n=71 cells, Figure 3D). Acute, 1-hour pretreatment with NGF did not change 

the total number of histamine-responsive neurons (N=78/482 vehicle cells (15.4%) vs. N=99/555 

NGF-treated cells (17.8%), χ2 test, not significant) or the peak calcium responses to histamine 

(Figure 3E). Similarly, 1-hour NGF did not change the proportion of capsaicin-responsive neurons 

(N=53/193 (27.5%) vehicle neurons vs N=68/226 (30.1%) NGF-treated neurons, χ2 test, not 

significant). Overnight incubation with NGF resulted in a significant increase in the proportion of 

histamine-responsive neurons (N=43/477 (9.1%) vehicle neurons vs. N=89/620 (14.4%) NGF-

treated neurons, χ2 test, p<0.01) (Figure 3F). There was no effect on peak calcium responses to 

histamine.  Overnight NGF treatment did not change the overall proportion of 
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Figure 3. NGF increases the proportion of histamine-responsive neurons. A, B. 
Representative images of Fura-2-labeled and Ret-EGFP-positive TG neurons. Arrows indicate 
cells labeled by both markers. C. Representative traces of neurons treated tested for histamine 
and capsaicin responses. D. Of histamine-responsive neurons (n=71), 80.3% were Ret+. E. 1-
hour pre-treatment with NGF did not affect the number or peak of histamine responses, or the 
proportion of capsaicin responsive neurons. F. Overnight pre-treatment with NGF increased 
the proportion of histamine-responsive neurons, but did not affect peak histamine responses 
or total capsaicin responsive neurons (χ2 test, **p<0.01). 
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capsaicin-responsive neurons. Neither treatment changed the proportion of histamine-responsive 

neurons that also responded to capsaicin (1-hour: 96.9% veh vs. 92.7% NGF; overnight: 90.1% 

veh vs. 87.6% NGF).  These results indicate that acutely applied NGF does not affect the number 

of histamine-responsive neurons in vitro. However, overnight exposure to NGF increased the 

proportion of histamine-sensitive neurons, suggesting an expansion of histamine receptor 

expression in previously histamine-unresponsive neurons.  

To determine whether artemin directly modulates sensory neuron responses to the non-

histaminergic pruritogen 

chloroquine, dissociated 

TG neurons from 

RetEGFP reporter 

animals were tested. 

Responses to mustard oil 

were also tested to 

determine if TRPA1 

modulation is another 

possible mechanism for 

the potentiation of 

chloroquine-induced itch 

(Figure 4A). In the 

vehicle-treated group, 

83.0% of the total 

chloroquine-responsive 

neurons were Ret-

positive (Figure 4B). 

Acute pre-treatment with 

 
Figure 4. Artemin increases the proportion of CQ-responsive 
neurons. A. Representative traces of neurons that were treated 
tested for chloroquine (CQ) and mustard oil (MO) responses. B. 
83% of chloroquine-responsive neurons were Ret-positive (n=93). 
C, D. Both 1 hour (C) and overnight (D) pretreatment with artemin 
(100ng/ml) significantly increased the proportion of chloroquine-
responsive neurons (χ2 test, *p<0.05, ***p<0.001). 
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artemin for 1 hour resulted in a significant increase in the proportion of chloroquine-responsive 

neurons from 10.9% in the vehicle group (N=104/956 cells) to 17.2% in the artemin-treated group 

(N=131/762 cells, χ2 test, p<0.001) (Figure 4C). Artemin pre-treatment did not affect peak calcium 

responses to chloroquine or the proportion of mustard oil-sensitive neurons (24.7% of vehicle- vs 

23.5% of artemin-treated neurons, χ2 test, not significant).  Overnight pre-treatment with artemin 

likewise increased the proportion of chloroquine-responsive neurons (N=51/429 vehicle neurons 

(11.9%) vs. N=84/508 artemin-treated neurons (16.5%), χ2 test, p<0.05), but did not change peak 

responses to chloroquine or the proportion of mustard oil-responsive neurons (Figure 4D). Neither 

treatment changed the proportion of chloroquine responders that also responded to mustard oil 

(1-hour: 72.1% vs. 71.8%; overnight: 66.7% vs. 63.1%). These findings indicate that acute and 

prolonged artemin pre-treatments significantly increase the proportion of chloroquine-responsive 

neurons in vitro, which may contribute to the potentiation of chloroquine-induced itch behavior.   

 

TrkAF592A mutation increases nociceptive detection thresholds but does not affect 

pruritogen-induced scratching 

To investigate whether endogenous NGF-TrkA signaling plays a role in regulating itch 

sensation and pruriceptor physiology, we obtained TrkAF592A mutant animals. These animals have 

a phenylalanine (F) to alanine (A) mutation in the ATP-binding pocket of TrkA that renders the 

receptor sensitive to pharmacological inhibition by the small molecule kinase inhibitor 1NMPP1 

[38]. We tested untreated homozygous mutants and their wild type littermates to confirm normal 

baseline pain and itch sensation. TrkAF592A mutants did not differ from their wild type littermates 

in body mass (n=4-5 per genotype, Figure 5A). However, homozygous TrkAF592A mutants with no 

pharmacological treatment had significantly increased baseline heat withdrawal latencies 

compared to their wild type littermates (N=7 per genotype, unpaired t test, *p<0.05) (Figure 5B). 

TrkAF592A mutants also demonstrated decreased sensitivity to mechanical and cold stimuli (Figure 
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5C-D). These results suggest that even without the use of pharmacological inhibitors, the 

TrkAF592A mutation has effects on endogenous TrkA function. Despite the observed effects on 

heat, mechanical, and cold detection 

thresholds, histamine- and chloroquine-induced 

scratching behavior was not different between 

TrkAF592A mutants and their wild type littermates 

(Figure 5E-F). These results indicate that the 

TrkAF592A mutation alters baseline nociceptive 

behaviors but does not affect pruritogen-evoked 

itch.  

NGF-TrkA signaling regulates sensory 

neuron survival during development and 

maintains target innervation and receptor 

expression in adulthood. The observed changes 

in pain detection thresholds may be due to loss 

of intraepidermal nerve fiber density or sensory 

neuron loss during development. To determine 

whether the TrkAF592A mutation results in a 

hypomorphic receptor, we used 

immunohistochemistry to quantify skin 

innervation. There was a significant decrease in 

βIII-tubulin immunoreactive epidermal nerve 

fibers in the footpad skin of TrkAF592A mutants 

when compared to wild type littermates, 

indicating a loss of total intraepidermal fiber 

density (Figure 6A-C). CGRP-positive fibers 

 
Figure 5. TrkAF592A mutation increased 
baseline heat, mechanical, and cold 
thresholds, but did not affect histamine- 
and CQ-evoked scratching responses. 
Mutants demonstrate normal body weight 
(A), but decreased nociceptive responses 
(B-D). Histamine- and chloroquine-induced 
itch was not different between genotypes (E-
F). (n=7 per genotype, unpaired t test, 
*p<0.05, **p<0.01).  
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were also significantly decreased in the mutant group, indicating a substantial loss of peptidergic 

innervation (Figure 6D-F).  

 

 

Figure 6. Altered TrkA signaling results in peptidergic intraepidermal fiber loss, but 
minor changes in sensory neuron responses to pruritoges and algogens. Representative 
images of βIII-tubulin-labeled intraepidermal fibers in wild type (A) and mutant (B) footpad skin. 
C. TrkAF592A mutants had a significant reduction on total intraepidermal fiber density (n=3-4 
animals per group, t test, **p<0.01). D-E. Representative images of CGRP+ fibers in wild type 
(D) and mutant (E), demonstrate the significant reduction in peptidergic fibers (F, n=3-4 
animals per group, t test, **p<0.01). Calcium imaging studies show a reduction in the 
proportion of histamine (G) and capsaicin (J) responders, but no effect on chloroquine- or 
mustard oil-responsive neurons (H-I) (χ2 test, *p<0.05, **p<0.01).  
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To determine whether altered NGF-TrkA signaling in the TrkAF592A mutant contributes to 

changes in pruriceptor and nociceptor subpopulations, we tested trigeminal neuron 

responses to the pruritogens histamine and chloroquine, and the algogens mustard oil 

and capsaicin. Despite the lack of behavioral effects on histamine-induced scratching, our 

data indicate a significant decrease in the overall proportion of histamine-responsive 

neurons from 13.3% to 9.1% in mutant animals (N=145/1089 +/+ neurons; N=78/853 

TrkAF592A neurons, χ2 test, p<0.01) (Figure 6G). There were no differences in the 

proportion of chloroquine- and mustard oil-responsive neurons (Figure 6H-I). TrkAF592A 

mutation resulted in a small but significant decrease in the proportion of capsaicin-

responsive neurons (N=270/819 (24.8%) wild type neurons versus N=172/681 (20.2%) 

TrkAF592A neurons, χ2 test, p<0.05) (Figure 6J). These findings indicate the TrkAF592A 

mutation likely alters endogenous TrkA signaling, resulting in a substantial loss of 

peripheral target innervation. Population studies using calcium imaging suggest that 

histamine- and capsaicin-responsive subpopulations depend on TrkA activity, while 

chloroquine- and mustard oil-responsive neurons may be maintained via TrkA-

independent mechanisms.  
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Discussion 

Chronic pruritus is a tremendous clinical problem associated with a number of 

dermatological diseases, including atopic dermatitis and psoriasis. Lesional skin in pruritic 

conditions exhibits increased levels of growth factors and epidermal innervation [24-27], 

suggesting that neurotrophic growth factors contribute to pruriceptor fiber growth and excitability. 

Here we investigated the direct effects of NGF and the GDNF family ligands on pruritogen-evoked 

itch behaviors and sensory neuron responses in vitro. Our data demonstrate distinct roles for NGF 

and artemin in the modulation of histamine- and chloroquine-evoked itch, respectively. Using 

TrkAF592A mutants, we tested the role of endogenous TrkA signaling in the maintenance of 

pruriceptors in adulthood, and determined that pruriceptive neurons are likely supported by TrkA-

independent mechanisms.  

The role of NGF in nociceptor plasticity has been extensively studied [51], yet little is 

known about the direct effects of NGF on pruriceptor physiology. Increased serum and skin levels 

of NGF in atopic dermatitis, prurigo nodularis, and psoriasis, suggest a role for NGF-TrkA 

signaling in the induction or maintenance of chronic pruritus [24-26, 52, 53]. Several studies have 

demonstrated acute application of NGF induces thermal and mechanical hyperalgesia in both 

rodents and humans [50, 51, 54-60]. One study tested the effects of a single intradermal injection 

of NGF on pruritogen-induced itch in healthy human volunteers, and determined that there was a 

potentiation of cowhage-induced itch, but not histamine-induced itch [29]. These results contrast 

with our finding that acutely applied NGF selectively potentiated histaminergic itch in mice. One 

factor that may contribute to this difference is the timeline of treatment. In the human study, 

investigators tested pruritogen responses at days 7 and 21 after NGF treatment, in order to 

coincide with previously identified peak of thermal and mechanical hyperalgesia, respectively. 

The 1-hour time point applied in our study likely restricts the effects of NGF to local receptor 

expression or sensitization at the fiber terminals, but it does not provide enough time for broad 

transcriptional or fiber growth changes to take place in trigeminal neurons [61]. The effects of 
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NGF treatment in humans one hour after intradermal injection remain unknown, but our findings 

suggest that acute sensitization of histamine-responsive fibers could occur.  

To investigate the direct effects of NGF on pruriceptive neurons and identify a potential 

mechanism for the sensitization observed in vivo, we measured dissociated trigeminal neuron 

calcium responses to histamine after treatment with NGF. Overnight incubation with NGF resulted 

in a significant increase in the number of histamine-responsive neurons, but acute 1-hour 

treatment had no effect. The lack of acute effect observed in culture suggests that NGF-induced 

sensitization of histamine-evoked itch may be dependent on NGF activation of local inflammatory 

cells such as mast cells to release mediators that can directly activate or sensitize afferent fibers 

innervating the skin [62, 63]. The expansion of the histamine-responsive proportion of neurons 

with prolonged overnight treatment suggests that NGF is a transcriptional regulator of histamine 

receptors in neurons and can induce expression in neurons that were previously histamine-

insensitive. Unexpectedly, NGF pre-treatment did not alter the proportion of capsaicin-responsive 

neurons, despite its well-known contribution to TRPV1 expression and sensitization. In summary, 

our data indicate that NGF increases histamine receptor expression in sensory neurons, 

suggesting that NGF may be a transcriptional regulator for receptors involved in itch, as well as 

pain.  

Studies have demonstrated that GFLs can also induce hyperalgesia by direct sensitization 

of nociceptors and modulation of nociceptor phenotypes. Acutely, all three GFLs sensitize TRPV1 

to produce thermal hyperalgesia. Inflammation and neuropathy models demonstrate that artemin 

and its co-receptor GFRα3 are upregulated and mediate cold hyperalgesia [49, 64] . On a more 

chronic scale, overexpression studies show that artemin increases both the expression of TRPV1 

and TRPA1 and intraepidermal fiber innervation, which contribute to increased sensitivity to heat, 

cold, and chemical stimuli [17, 65].  

We determined the effects of the GNDF family ligands (GFLs) GDNF, neurturin, and 

artemin on pruritogen-evoked itch. Our findings indicate that GNDF and neurturin do not affect 
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pruritogen-evoked itch, while artemin potentiates chloroquine-induced itch but suppresses 

histamine responses. To activate the receptor tyrosine kinase Ret, each GFL requires a specific 

co-receptor known as the GDNF receptor α (GFRα1-4), conferring GFL-cell type specificity [8]. 

MrgprA3-positive neurons represent a subset of the chloroquine-responsive population, and 

molecular studies using reporter mice demonstrate that this group of cells expresses both the 

peptidergic marker CGRP, and the non-peptidergic marker Ret [13, 66]. Our calcium imaging 

studies in Ret-EGFP reporter mice indicate the vast majority of functionally identified chloroquine-

sensitive neurons are indeed Ret-positive. The artemin co-receptor GFRα3 is also found in 

sensory neurons that express Ret, TrkA, and peptidergic markers such as TRPV1 and CGRP [49, 

65, 67], suggesting that MrgprA3 and GFRα3 may colocalize to the same population. 

Furthermore, artemin was previously demonstrated to enhance warmth-induced “itch-like” 

grooming responses in mice [28], and clinical trials testing artemin as a potential treatment for 

sciatica found the most commonly reported adverse effect (occurring in more than 40% of 

participants) was pruritus [30, 31]. These findings support the idea that artemin can acutely 

sensitize itch responses to non-histaminergic pruritogens. Furthermore, our calcium imaging 

studies demonstrate that artemin increased the proportion of chloroquine-responsive neurons in 

culture, indicating artemin may also be a transcriptional regulator of chloroquine receptor 

expression.  

To determine the role of endogenous TrkA signaling in the maintenance of pruriceptors in 

adulthood, we used the TrkAF592A mutant.  Despite no reports of a detrimental effect on neuronal 

survival in the early postnatal period [38], we found that the TrkAF592A mutation resulted in 

significant intraepidermal fiber loss and increased pain detection thresholds in adulthood. These 

findings are consistent with the analgesic phenotypes of NGF/TrkA knock-out animals [68, 69], 

suggesting that this mutation alters normal TrkA signaling and likely results in a hypomorphic 

receptor.  Interestingly, pruritogen-evoked itch and sensory neuron responses in these animals 

remained largely intact. In vitro studies of sensory neurons demonstrate a small but significant 
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reduction in the proportion of histamine- and capsaicin-responsive neurons. Prior studies have 

demonstrated the proportion of histamine-responsive neurons can range between approximately 

10-15%, which may explain why this reduction did not result in robust in vivo effects. These 

findings suggest that endogenous NGF-TrkA signaling may not be required for the maintenance 

of pruriceptive fiber innervation and functional pruritogen receptor expression in adult sensory 

neurons. However, further characterization of sensory neuron loss and receptor activation is need 

to clarify the extent functional loss in these mutants.  

 In summary, we tested the hypothesis that neurotrophic factors regulate pruritogen-

induced itch and sensory neuron responses. We found NGF and artemin have distinct roles in 

the sensitization of histaminergic and histamine-independent itch. In addition, NGF and artemin 

regulate pruritogen receptor expression in vitro, suggesting a potential mechanism for itch 

sensitization in pruritic skin diseases where high levels of growth factors can be found in the skin. 

Furthermore, a mutation in the high-affinity NGF receptor TrkA confirms its involvement in 

nociceptor maintenance, but indicates it may not be required for normal itch responses. 

Neurotrophic growth factors represent potential clinically relevant mediators of itch and further 

studies should explore their role in chronic and inflammatory itch mechanisms. 
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Chapter 5 

Functional studies of human sensory neuron responses to pruritogens 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
This chapter is adapted from the following manuscripts: 
 
Valtcheva MV*, Copits BA*, Davidson S, Sheahan TD, Pullen MY, McCall JG, Dikranian K, 
Gereau RW. Surgical extraction of dorsal root ganglia from organ donors and preparation of 
primary human sensory neuron cultures. Nature Protocols. 2016. In Press.  
 
Valtcheva MV, Golden JP, Sheahan TD, Pullen MY, Vogt SK, Jain S, Davidson S, Gereau RW.  
Neurotrophic factors selectively modulate pruritogen responses in mouse but not human sensory 
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Abstract 

Primary cultures of rodent sensory neurons are widely used to investigate the cellular and 

molecular mechanisms involved in pain and itch. The translation of preclinical findings into 

effective patient therapies may be greatly improved by direct validation in human tissues. We 

developed an approach to extract and culture human sensory neurons in collaboration with a local 

organ procurement organization. Here we describe the surgical procedure for extraction of human 

dorsal root ganglia (hDRG) and the culture techniques used to prepare viable adult human 

sensory neurons for functional studies. Dissociated sensory neurons can be maintained in culture 

for more than 10 days, and are amenable to electrophysiological recording and calcium imaging. 

We further applied this approach to determine the effects of growth factors on human pruriceptor 

populations. Our findings indicate that NGF and artemin did not change the proportion of 

pruriceptive neurons, suggesting different mechanisms may be involved in the sensitization of 

mouse versus human sensory neurons. The approach we have developed can be applied at any 

institution with access to organ donors that consent to tissue donation for research and provides 

an invaluable resource for improving translational research.  
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Introduction 

Preclinical studies of pain, itch, nerve injury, regeneration, and axonal transport rely 

heavily on the use of primary cultures of dissociated rodent sensory neurons. Many candidate 

molecular targets and genes have been identified using this approach, yet few of these findings 

have directly translated into effective and safe clinical treatments [1-5]. Several notable failures in 

translation have raised questions about possible differences in fundamental biological 

mechanisms between humans and rodents [6-12]. For example, NK1 receptor antagonists failed 

to provide significant analgesia in humans, despite strong preclinical effects in rodents [6]. In 

addition, GABAA receptor-mediated currents in cultured human sensory neurons were recently 

found to exhibit distinct biophysical features from those in rodents, demonstrating the importance 

of preclinical validation between species [13-16]. 

Recent advances in induced pluripotent stem cell (iPSC) methods have produced 

nociceptor-like cells derived from human fibroblasts that express TRP channels and can be 

sensitized by inflammatory mediators such as PGE2 [17, 18]. Unlike sensory neurons obtained 

from organ donors, such methods are not restricted by donor availability because they do not rely 

on post-mortem tissue collection and can be further strengthened by a living donor’s developing 

medical history. However, the iPSC approach is still significantly limited by low nociceptor 

conversion rates (<5%) and the use of varying transcription factor combinations to produce 

nociceptor-like populations. While both approaches can be informative, direct studies in human 

sensory neurons may more accurately recapitulate the complex overlapping sensory neuron 

subpopulations and downstream signaling cascades involved in sensory processing.   

Cultured human sensory neurons can serve as a valuable tool in functional and genetic 

studies to validate the numerous molecular targets identified in animal models. By using 

techniques such as patch-clamp electrophysiology, calcium imaging, immunohistochemistry, 

gene knock-down, and viral gene transfer, the fundamental physiological properties of human 

sensory neurons can be more accurately characterized. These approaches could lead to the 
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discovery of novel target receptors or channels and allow for in-depth characterization of 

pharmacological agents in native human cells. Furthermore, the potential of novel therapeutic 

interventions involving gene therapies, and optogenetic and chemogenetic manipulations of 

cellular activity can be verified directly in human sensory neurons.  The protocol we developed 

allows us to obtain DRG from multiple spinal levels, giving us the opportunity to culture from half 

of the ganglia, while preserving the remaining tissue for RNA sequencing and 

immunohistochemical analysis. This permits parallel functional and gene expression studies from 

the same donor with the ability to correlate observations with patient medical record information 

[14, 16, 19]. Future studies employing a combination of these approaches can help identify human 

biomarkers for chronic pain and itch. 

Recent studies in the field of itch have identified the Mas-related G protein-coupled 

receptor (Mrgpr) subtypes A3 and C11 as key mediators of acute and chronic itch in mice [20-

22]. However, these receptors are not evolutionarily conserved in humans, which instead have 

four MRGPRX receptors (MRGPRX1-4). Studies using heterologous systems have determined 

that the human MRGPRX1 receptor can be activated by both MrgprA3 and MrgprC11 agonists, 

although key differences in the pharmacological and signaling profiles of these receptors indicate 

distinct molecular mechanisms in mice versus humans [20-24]. In this study, we demonstrate the 

pruriceptive subpopulations of human sensory neurons that respond to histamine and 

chloroquine, and their functional overlap with TRP channels. In our prior studies we determined 

that NGF and artemin increased the proportion of histamine- and chlroquine-responsive neurons 

in mouse. We now test the effects of these growth factors in human sensory neurons and use 

RNA sequencing to determine the expression of pruritogen receptors, TRP channels, and 

neurotrophic growth factor receptors in whole human DRG.  
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Materials and Methods 

Access to human donor tissue 

We established a collaboration with Mid-America Transplant, a local organ procurement 

organization. Extraction procedures were approved by Mid-America Transplant and appropriate 

regulatory documentation and agreements were obtained, including IRB waiver from the Human 

Research Protection Office at Washington University in St. Louis and material transfer agreement. 

Mid-America Transplant obtained documentation of donor or family consent to tissue donation for 

research and provided access to all medical records available at procurement. Since establishing 

this approach at our institution, we have had access to donor tissue approximately 1-2 times per 

month. Once a donor becomes available and consent has been obtained for tissue donation to 

research, we are contacted by Mid-America Transplant staff, generally 3-8 hours prior to organ 

procurement.  

 

Surgical extraction of human dorsal root ganglia (hDRG) 

Sterile operating room procedures were followed throughout tissue extraction in order to 

not interfere with further tissue procurement after DRG have been removed. Once the transplant 

surgical team completed the extraction of all organs to be used for transplantation (e.g. liver, 

kidneys, heart), all remaining viscera were either retracted or removed.  The lumbar spinal column 

was exposed by removing the abdominal vasculature, including the abdominal aorta, inferior vena 

cava, and lymphatics, and remaining connective tissue located anterior to the spine in the 

retroperitoneal space. The psoas major and psoas minor muscles were cut and retracted or 

removed from their origin to expose the lateral aspects of the spinal column and the roots of the 

lumbar plexus. Using a mallet and straight osteotome, L1 and L5 vertebral bodies were 

transected, stopping at the spinal canal (Figure 1a). With the use of a mallet and curved 

osteotomes, the pedicles were transected bilaterally between L1 and L5, while staying close to 
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the posterior edge of the vertebral bodies, but anterior to the spinal canal (Figure 1b). The entire 

anterior portion of the vertebral column between L1 and L5 was manually removed by lifting 

carefully to minimize tearing of structures in the intervertebral foramina and simultaneously cutting 

any dural attachments to the posterior longitudinal ligament (Figure 1c). This approach ensured 

that the transverse processes, laminae, and spinous processes remain in place. It is essential to 

leave the dorsal portion of the vertebral column intact to maintain the integrity of the body for 

 
Figure 1. Surgical extraction of hDRG using ventral approach. (a-b) Illustration depicting 
the ventral (a) and lateral (b) views of the spinal column with lumbar vertebral bodies L1 and 
L5 indicated by arrows. Red dashed lines indicate the location of bone transection. After the 
spinal column is visualized, lumbar vertebrae can be correctly identified by counting up from 
L5, which is located directly above the sacrum (a,b). Using a straight osteotome and surgical 
mallet, the L1 and L5 vertebral bodies are transected, stopping at the spinal canal (red dashed 
lines in panel a, black lines indicate transected bone in panel b). Using a curved osteotome 
and mallet or autopsy saw, the pedicles of each vertebrae are transected bilaterally between 
L1 and L5 (red dashed lines in panel b). (c) Illustration showing the anterior portion of the 
vertebral column removed to expose the spinal canal where the cauda equina and DRG are 
located (TP: transverse process, CE: cauda equina, PLL: posterior longitudinal ligament, DM: 
dura mater, DRG: dorsal root ganglion). (d) Each DRG is dissected away from surrounding 
bone and connective tissue and the nerve roots and rami are cut to completely free each 
ganglion (red dashed lines).  
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further tissue procurement and funeral service purposes. When devising our approach, this was 

a major concern for Mid-America Transplant.  

DRG were visualized by a gentle tug on the dura mater and each ganglion was dissected 

away from surrounding connective tissue and bone using DeBakey pick-ups and dissecting 

scissors. The spinal roots and rami of peripheral nerves were then cut to completely free the DRG 

(Fig. 1d). Each DRG was fully submerged in ice-cold N-methyl-D-glucamine artificial 

cerebrospinal fluid solution (NMDG-aCSF) in air-tight 50 ml conical tubes and maintained on ice 

for transport. NMDG-based aCSF solutions reduce neuronal permeability to sodium and calcium, 

reduce oxidative stress, and are very beneficial for producing adult rodent brain and spinal cord 

slices for electrophysiological recordings [25-28].  DRG tissue from human organ donors was 

extracted as soon as possible to minimize post-mortem interval. We were generally able to extract 

DRG 1.5-3 hours post-mortem, immediately after the surgical resection of organs for 

transplantation. However, we have obtained viable neuron cultures from tissues extracted up to 

4 hours post-mortem.  

 

Cleaning and dissection of DRG 

Upon return to the laboratory, each individual DRG was placed in a 60 mm petri dish filled 

with ice cold NMDG-aCSF and maintained on ice for the duration of cleaning and dissection. 

Using large spring scissors and forceps, any remaining fat and connective tissue surrounding 

DRG were removed (Figure 2a).  With the aid of a dissection microscope, forceps and large spring 

scissors were used to identify the edge of the dura along the severed ends of the central and 

peripheral nerve processes. The dura was then cut longitudinally from the peripheral to the central 

endings. The dura was removed by continually pulling away from the ganglion and cutting along 

the edge where the dura meets the DRG and nerves (Figure 2b). The remaining central and 

peripheral nerve processes were trimmed with a scalpel, so that only the ganglion body remained 



www.manaraa.com

110 
 

(Figure 2c). One ganglion from each spinal level was used for culture, while the corresponding 

contralateral DRG was saved for immunohistochemistry and RNA sequencing studies, to allow 

for direct functional comparisons. Once the contralateral ganglion was cleaned, it was cut into 

small pieces and part of the tissue was immediately frozen in RNAlater for RNA sequencing or 

RT-PCR, while the rest of the DRG was post-fixed in 4% paraformaldehyde solution for intact 

ganglion histology.  

 

Dissociation and culturing of DRG 

Each DRG to be used for culture was minced with a scalpel as finely as possible into 

pieces no larger than 3 mm in diameter. All tissue fragments were placed into a 14 ml snap-cap 

tube containing 3 ml of pre-warmed (37°C) papain/NMDG-aCSF solution (1.5U/ml) and incubated 

for 1 hour at 37°C and 5% CO2. The tube was gently agitated every 20 min to mix tissue with 

solution. The tissue was washed carefully 3 times with 3 ml of fresh NMDG-aCSF, warmed to 

37°C. The tissue was then incubated in 3 ml of NMDG-aCSF-collagenase (15mg/ml) solution for 

1 hour at 37°C and 5% CO2, while agitating gently every 20 min to mix the tissue with the solution. 

Tissue was carefully washed 3 times with 3 ml of fresh NMDG-aCSF warmed to 37°C. The 

remainder of NMDG-aCSF solution was then removed and 2 ml of pre-warmed DRG medium 

were added. DRG tissue was then triturated gently through the fire-polished tip of a sterile glass 

 
Figure 2. Cleaning of hDRG prior to dissociation. (a) Extracted ganglia are first cleaned of 
all visible fat and connective tissue. (b) Dura mater is then removed to expose underlying 
ganglion and nerve roots and rami. (c) Nerve roots are trimmed so that only the ganglion 
remains for dissociation. Scale bars represent 1 cm.  
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Pasteur pipette until the solution became cloudy and little resistance remained (approximately 10-

20 times). The solution of dissociated neurons was carefully passed through a 100 μm sterile filter 

into a 50 ml conical tube. The filtrate was centrifuged at room temperature for 4 min at 180g. The 

supernatant containing debris was carefully removed and the pellet was re-suspended in 1 ml 

warmed DRG medium by pipetting up and down several times. Cell suspension was centrifuged 

again for 3 min at 180g.  The supernatant was removed and the pellet was re-suspended in 1 ml 

warmed DRG medium by mixing gently. At this point, the cell suspension was counted using a 

hemocytometer and diluted to desired concentration. The cell suspension was plated onto poly-

D-lysine and collagen-coated glass coverslips for a final plating density of approximately 500 

cells/coverslip. The cell-plated coverslips were incubated at 37°C, 5% CO2 for 1-1.5 hours to allow 

neurons to adhere to the glass and then 900 μl warm DRG medium was added. Dissociated 

hDRG cultures were maintained at 37°C, 5% CO2 in a humidified chamber until use. Half of the 

culture medium was replaced with fresh warmed medium every 3-4 days. 

 

Reagents 

Poly-D-lysine (PDK) solution was made by dissolving 5 mg PDK in 50 ml sterile water, 

aliquoted into 1 ml (0.1 mg/ml) per tube, and stored at -20°C. Rat tail collagen (Sigma) was 

dissolved in sterile water for a final concentration of 1 mg/ml and stored at 4°C up to 2-3 months. 

PDK/collagen solution was made at a final concentration of 0.01 mg/ml PDK and 0.2 mg/ml 

collagen. Papain solution was made by adding 0.5 μl of 0.5 M NaOH to 1 mg/50μl L-cysteine and 

then combined with 45U papain in 3 ml of NMDG-aCSF. Solution was made fresh and warmed 

to 37°C immediately prior to use. DRG medium was Neurobasal A media supplemented with B27, 

100U/mL penicillin/streptomycin, 2 mM Glutamax, and 5% fetal bovine serum (Gibco). For 

electrophysiology experiments, neurotrophic factor (NTF)-treated neurons were plated in the 

presence of 25ng/ml human β-nerve growth factor (hNGF) (Cell Signaling Technology) and 

recombinant human glial cell line-derived neurotrophic factor (hGDNF) (Peprotech).  
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NMDG-artificial cerebrospinal fluid (aCSF) solution: The reagents listed in Table 1 were combined 

in 450 ml Milli-Q H2O in the order listed. pH was adjusted to 7.4 with NMDG/HCl and osmolarity 

was adjusted to 300-310 mOsm with H2O or sucrose [25, 26]. NMDG-aCSF solution was always 

made fresh and bubbled with carbogen gas (95% O2, 5% CO2) for at least 15 min prior to use to 

achieve stable pH and saturate with oxygen.  

Table 1. Reagents used to prepare NMDG-aCSF.  

Reagent 

Final 
Concentration 
(mM) 

MW or 
Concentration 
of stock 500 ml 

NMDG 93 195.2 9.08 g 
HCl  12.1 N 3.5 ml 
KCl  2.5 2.5 M 500 μl 
NaH2PO4  1.25 1.25 M 500 μl 
NaHCO3 30 84.0 1.26 g 
HEPES  20 2 M 5 ml 
Glucose  25 2.5 M 5 ml 

Ascorbic acid 5 176.1 0.44 g 
Thiourea 2 76.1 0.08 g 
Na+pyruvate 3 110.0 0.17 g 

MgSO4  10 2 M 2.5 ml 
CaCl2  0.5 1 M 250 μl 

N-acetylcysteine 12 163.2 0.98 g 

 

Immunocytochemistry 

Coverslips of dissociated neurons were fixed in 4% paraformaldehyde/ 4% sucrose. 

Antibodies used include: Rabbit anti-TRPV1 (1:800), custom-made serum directed against the 

TRPV1 C-terminus peptide CLKPEDAEVFKDSMVPGEK, specificity confirmed in TRPV1-/- mice 

[29, 30]; Mouse anti-βIII-tubulin (1:2000) – EMD Millipore (cat. no. 05-559), species reactivity 

(hm/bv/rat/ms), Antibody Registry ID: AB_309804; Guinea pig anti-GFAP (1:1000) – Synaptic 

Systems (cat. no. 173 004), species reactivity (hm/rat/ms/ck), Antibody Registry ID: 

AB_1064116;. Mouse anti-synapsin 1 (1:2000) – Synaptic Systems (cat. no. 106 001), species 

reactivity (hm/ms/rat/avian/zebrafish), Antibody Registry ID: AB_887805; Guinea pig anti-tau 

(1:2000) – Synaptic Systems (cat. no. 314 004), species reactivity (hm/ms/rat), Antibody Registry 

ID: AB_1547385. Secondary antibodies used were donkey Alexa Fluor 555/647 (1:2000).  
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Patch-clamp Electrophysiology 

Fire polished, filamented glass electrodes were pulled using a P-97 horizontal puller 

(Sutter Instrument Company) with open tip resistances ranging from 2.0–4.5 MΩ. The internal 

pipette solution contained (in mM): 120 K+ gluconate, 5 NaCl, 2 MgCl2, 0.1 CaCl2, 10 HEPES, 

1.1 EGTA, 4 Na2ATP, 0.4 Na2GTP, 15 sodium phosphocreatine; pH adjusted to 7.3 using KOH, 

osmolarity 291 mOsm. For the duration of recording, cells were continuously perfused with 

external solution at room temperature containing (in mM): 145 NaCl, 3 KCl, 2.5 CaCl2, 1.2 MgCl2, 

10 HEPES, 7 glucose, adjusted to pH 7.4 with NaOH. Neurons were recorded with an EPC10 

amplifier (HEKA Instruments) and Patchmaster software (HEKA Instruments). After acquiring 

gigaseal and break-in, neurons were given at least 2 minutes to stabilize and then a series of 

protocols to determine membrane excitability were performed. Action potentials were evoked in 

current clamp mode using a series of increasing 1 second ramp current injections. The first action 

potential of a train was used to determine threshold, defined as the voltage at which the first 

derivative of the membrane potential increased by 10 V/s. Rheobase was established from the 

step or ramp current pulse at which the first action potential was triggered. 

 

Calcium imaging  

The protocol for calcium imaging was the same as our previous studies in mouse [29-33]. 

Neurons were incubated for 45 minutes in 3 μg/mL (3µM) of the cell-permeant ratiometric calcium 

indicator Fura-2 AM (Molecular Probes) and then incubated in external solution (in mM): 130 

NaCl, 5 K, 2 CaCl2, 1 MgCl2, 30 Glucose, 10 HEPES for a 20-minute de-esterification prior to 

recording. Coverslips were positioned in a recording chamber and continuously perfused with 

external solution. Recordings took place at room temperature. Cells were viewed under an 

inverted microscope (Olympus Optical, Tokyo, Japan) and images were captured with a 

Hamamatsu Orca camera. Regions of interest encompassing all Fura-loaded cells were identified 

a priori and the ratio of fluorescence emission at an alternating excitation wavelength of 357 and 
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380 nm was recorded with SimplePCI Software. The experimental protocol consisted of a 2-

minute baseline followed by 30 second bath application of 100 μM histamine (Sigma, St. Louis), 

8 minutes of external solution wash, 30 seconds of 1mM chloroquine (CQ, Sigma, St. Louis), 8 

minutes external solution wash, 30 seconds of 100 μM mustard oil (MO, Sigma, St. Louis), 8 

minutes of external solution, 20 seconds of 200nM capsaicin (Sigma, St. Louis), 4-8 minutes of 

external solution, and 10 seconds of high KCl (50mM). Peak responses were determined by 

calculating the absolute increase in Fura-2 signal above baseline immediately prior to each 

stimulus. A change from resting level of ≥10% was set as the threshold for a response to a bath 

applied stimulus. Cells unresponsive to capsaicin or high K+ were excluded from physiological 

analysis. Calcium imaging recordings were performed on the 5th-7th days in vitro (DIV) to allow 

glial cells to peel off neurons and expose the plasma membrane for reliable Fura-2 signal 

visualization. For NTF treatment, cells from the same donor were treated with growth factor 

(100ng/ml human nerve growth factor, Peprotech; 100ng/ml human artemin, R&D Systems) or 

vehicle the evening prior to recording. The overall proportion of responders were determined for 

each donor and used for statistical comparisons (unpaired t test). Post-hoc measurements of cell 

diameter of responsive neurons were made in ImageJ using images obtained immediately prior 

to calcium imaging recording in SimplePCI.  

 

RNA sequencing of whole human DRG 

RNA and library preparation: Fresh DRG tissue from organ donors was cut into several sections 

and frozen at -80°C in RNAlater (Ambion) immediately after extraction.  For RNA preparation, 

DRGs were thawed, cut into small pieces, and put in TRIzol reagent (Life Technologies Inc).  

Tissue was then homogenized using an electric homogenizer and total RNA was isolated per the 

manufacturer’s instructions. Only samples with RNA integrity number (RIN) of > 7 were used for 

further analysis. Library preparation was done at the Genome Technology Access Center at 

Washington University (GTAC).  Briefly, 30 ng of total RNA were reverse transcribed and amplified 
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using the SMARTer Ultra low input RNA for Illumina Sequencing –HV (Clontech).  After cDNA 

preparation and shearing using an ultra-sonicator (Covaris), the libraries were prepared using 

VeraSeq Ultra DNA Polymerase for 12 cycles.  The forward primer used was: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT. The 

reverse primer contains the unique reverse complement of the respective index nucleotides. The 

sequence of the reverse primer where "N" denotes the reverse complement of 7 nucleotides of 

the index is CAAGCAGAAGACGGCATACGAGATNNNNNNNGTGACTGG-

AGTTCAGACGTGTGCTCTTCCGA.  The purified cDNA yield was 16.5 ng/μl in 30μl.   

Nextgeneration sequencing and analysis: Single end sequencing was done on the Illumina 

HiSeq2500 platform following the manufacturer's protocol at the GTAC.   The raw demultiplexed 

RNA-seq reads were aligned with STAR version 2.0.4b 

(https://github.com/alexdobin/STAR/releases) (GRCh37 assembly). Low base quality reads and 

adaptors were clipped.  All known genes with raw counts were enumerated to the matching gtf 

file from the same reference build from Ensembl with Subread:featureCounts (version 1.4.5) 

(http://sourceforge.net/projects/subread/) using the Ensembl gene ID as the key.  Reads per 

kilobase of transcript per million mapped reads (RPKM) values were generated in R using raw 

counts.  We assessed sequencing performance for total number of aligned reads, uniquely 

aligned reads, number of genes and transcripts detected, and found less than 1% of ribosomal 

fraction and Spearman correlation of >0.9 between samples.   

 

 

  

https://github.com/alexdobin/STAR/releases
http://sourceforge.net/projects/subread/
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Results 

Establishing primary cultures of human dorsal root ganglia 

We developed a collaboration with the local organ procurement organization Mid-America 

Transplant to gain access to human dorsal root ganglia from deceased organ donors that have 

consented to tissue donation for research. After devising a surgical approach that provides a short 

post-mortem interval and minimal interference with further tissue procurement (Figure 1), we were 

able to obtain DRG from a number of donors of both sexes and varying ages (Table 2). We 

established a culturing protocol which follows our prior published studies of mouse sensory 

neurons very closely, utilizing the same coverslip coating solution, digestive enzymes, and culture 

medium [30-32, 34-37]. However, we incorporated a number of key modifications: a specifically 

designed preservation solution for transport, new instructions for tissue preparation, changes to 

enzyme digestion duration, and amount of time in culture prior to functional recordings [30-32, 34-

37]. Our studies using hDRG show that these adaptations maintain neuronal viability in transport 

and address several issues that arise from dissociation of substantially larger tissues with more 

abundant connective tissue than rodent DRG [19].  

Table 2. Donor demographics. (COD: cause of death, CVA: cerebrovascular accident).   

Donor # Age Sex Race/Ethnicity COD 

1 27 F White Head trauma 

2 30 F White CVA/Stroke 

3 31 F White Head trauma 

4 44 F Middle Eastern CVA/Stroke 

5 58 F White CVA/Stroke 

6 10 M White Head trauma 

7 21 M White CVA/Stroke 

8 22 M Black Anoxia 

9 41 M White Head trauma 

10 44 M White CVA/Stroke 

11 47 M White Head trauma 

 
The total number of coverslips obtained for functional studies depended on the number of 

ganglia cultured and cell density needed for the particular study. We found that one DRG can 

produce approximately 10-12 coverslips plated at a density of 500 cells/coverslip. However, this 
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can vary based on several factors, including DRG size (L1 is considerably smaller than L2-4), 

degree of dissociation, and general health of the tissue. Younger donors tended to have DRG 

that were easier to dissociate and neuron number and responses in culture were generally better. 

The density of 500 cells/coverslip provides an optimal number of cells for calcium imaging studies 

(~20-30 cells per viewing field at a 10x magnification) without excessive debris. Future studies 

can adjust the plating density to fit investigator needs. For example, plating at a lower density of 

200 cells/coverslip was suitable for electrophysiological recordings and immunocytochemical 

studies, but did not provide robust numbers for calcium imaging studies.   

Appearance of neurons in culture 

 While most rodent studies can be completed within 24 hours of cell plating, human sensory 

neurons were often tightly encased by satellite glia until the third or fourth day in vitro (DIV). During 

these first days in culture, glial cells peeled off allowing membrane access for patch pipettes or 

direct fluorescence visualization (Figure 3). More vigorous dissociation protocols can yield 

neurons free of supporting glia, but the health and survival of these neurons may be reduced [16]. 

The neurons produced with our extraction and dissociation protocol could be maintained in culture 

Figure 3. Dissociated hDRG neurons over time in vitro. Infra-red differential interference 
contrast microscopy (IR-DIC) images of cultured human sensory neurons.  (a) Initially, most 
dissociated neurons are encased in glial cells (white arrows) after 1 day in vitro (DIV), but can 
be identified by partially visible plasma membrane (white arrowhead). (b) As time in culture 
progresses, glia (white arrows) continue to peel off and adhere to the coverslip, exposing more 
of the plasma membrane. (c) After 6 DIV, the plasma membrane of most neurons is completely 
exposed, leaving them amenable to patch-clamp recordings and calcium imaging studies. 
Scale bars represent 20 μm.  
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for more than 10 days.  Whole ganglia and dissociated neurons can be studied using validated 

antibodies and standard immunocytochemical techniques to characterize cell morphology and the 

localization and expression of ion channels, receptors, and intracellular proteins (Figure 4) [28, 

30]. In addition, the coverslips used for functional studies by patch-clamp [16, 36-38] and calcium 

imaging [31, 36] can be fixed immediately after the experiment to allow for immunocytochemical 

studies of the same functionally-characterized neurons.    

 
Figure 4. Immunocytochemical analysis of cultured hDRG neurons. Collapsed confocal 
micrographs of immunolabeled neurons using standard techniques. (a) GFAP+ cells (purple) - 
presumably satellite glia that initially encase dissociated hDRG neurons – that have migrated 
onto the coverslip after 8 DIV. (b) Merged image with neurons immunolabeled for the 
cytoskeletal protein βIII-tubulin (green) and nuclei labeled with DAPI (blue). (c) TRPV1 
immunofluorescence (red), a common nociceptive marker in rodent DRG, was observed in 
subsets of cultured human sensory neurons. Nuclei are labeled with DAPI (blue). (d-f) 
Fluorescence images of cultured hDRG demonstrating extensive axonal process growth and 
branching marked by tau immunoreactivity (green) and a component of the synaptic vesicle 
release machinery, synapsin (red). Merged images are shown in (f) with DAPI-labeled nuclei 
(blue). (g-i) Cropped sections from the boxed areas in (d-f), showing an en passant-type 
presynaptic enlargement (synapsin, red) that formed along a sensory axon (tau, green). Scale 
bars represent 50 µm for panels (a-f), and 5 µm for the panels shown in (g-i).  
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Electrophysiological properties of hDRG neurons cultured in the presence or absence of 

growth factors  

Prior studies using primary cultures of hDRG neurons have applied human nerve growth 

factor (hNGF, 25 ng/mL), and human glial cell line-derived neurotrophic factor (hGDNF, 25 ng/mL) 

in the culture medium [16]. However, growth factors can directly modulate neuronal excitability 

and receptor expression, thus confounding any future studies on the effects of growth factors on 

pruriceptor sensitization. To determine if culturing with or without growth factors significantly 

impacted sensory neuron physiology, we used patch-clamp electrophysiology techniques to 

measure the basic excitability and membrane properties of the neurons in our cultures. We found 

that cells cultured without growth factors survive for more than 10 days without measurable effects 

on membrane properties. Gigaohm seals were obtained from >95% of selected neurons. We were 

careful to only patch neurons with a clearly visible soma devoid of satellite glial cells and exhibited 

a “smooth” membrane (Figure 3c). Whole-cell recordings were successful from >95% of these 

neurons, which included stable access resistance and a resting membrane potential 

hyperpolarized over -40 mV.  We found that neurons could be cultured in the absence or presence 

of the growth factors NGF and GDNF, and that chronic treatment did not affect cellular excitability, 

resting membrane potential, or soma size (Figure 5). The ability to maintain these neurons in 

culture in the absence of growth factors allows for future studies to determine the acute effects of 

growth factors on receptor expression and neuronal sensitization.  

 

Effects of NGF and artemin on human pruriceptors  

Very little is currently known about the human pruriceptive sensory neuron populations 

and whether they can be sensitized by neurotrophic factors. To investigate the direct effects of 

neurotrophic factors on dissociated hDRG neurons, we measured calcium responses to the 

pruritogens histamine and chloroquine, the TRPA1 agonist mustard oil, and the TRPV1 agonist 
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capsaicin. Prior to recording, neurons were maintained in culture without growth factors for 5-7 

days. Due to the precious nature of human tissue, we focused our studies on the growth factors 

we previously determined had effects on mouse pruriceptors: NGF and artemin. Once free of glial 

cells, neurons were treated with either a growth factor or vehicle overnight. On the next day, 

neurons were incubated with the fluorescent calcium indicator Fura-2AM and calcium responses 

Figure 5. Long-term culturing with neurotrophic factors does not alter hDRG 
excitability.  
Human sensory neurons were grown in the absence (black traces) or presence (red traces) 
of the neurotrophic factors NGF and GDNF (NTFs, 25ng/ml each, added to wells chosen 
randomly from all spinal levels). Recordings were performed between 4-9 DIV and cells were 
excluded from further analysis if the resting membrane potential was more depolarized than 
-40 mV. (a,b) Voltage traces illustrating action potential firing to 1 s depolarizing step (a) or 
ramp (b) current injections of 1-4 times current threshold (rheobase) of neurons grown in the 
absence (black traces) or presence of NTFs (red traces). Scale bars are 20 mV and 200 ms. 
(c,d) Summary plots of the number of action potentials elicited in neurons in response to 
both step (c) and ramp (d) stimuli, which were not significantly different between the two 
culturing conditions (two-tailed Mann-Whitney test, P values range from 0.143 to 0.964). (e,f) 
Quantification of step (e) or ramp (f) current threshold to elicit an action potential. No 
differences were found between the two groups (two-tailed Mann-Whitney test, P=0.738 for 
panel e, and P=0.361 for panel f). (g) Summary graph of the resting membrane potential for 
cells cultured in the absence or presence of NTFs, which were not significantly different (two-
tailed unpaired t-test; P=0.657). (h) Average soma diameters of neurons in both culturing 
conditions, which were not significantly different (two-tailed unpaired t-test; P=0.775). This 
suggests that the preferential survival of sub-populations of sensory neurons with different 
cell diameters was not influenced by either culturing condition. 19-30 cells were used for 
quantification per condition from four donors (4-30 cells for each measurement per donor), 
and all data are represented by the mean ± s.e.m of cells pooled across all donors.  
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to bath applied stimuli were recorded (Figure 6A-B). The average soma diameter of vehicle-

treated neurons in culture was 45 µm (± 9.9 µm SD, minimum: 16.8 µm, maximum 72.6 µm, 

n=118 neurons) (Figure 6C).  

 
Figure 6. Effects of NTFs on human sensory neuron responses to pruritogens. A. 
Calcium responses of dissociated hDRG neurons were measured using Fura-2AM (scale 
bar=100µm). B. Representative traces of calcium responses to the indicated bath-applied 
stimuli. C. Frequency histogram of cell diameter of responsive neurons. D. Distribution of 
stimulus-responsive neurons in control groups across all donors. Each data point represents 
an individual donor. E. Overnight treatment with NGF (100ng/ml) did not change the proportion 
of histamine-, chloroquine-, or capsaicin-responsive hDRG neurons (N=3 donors, 9-86 
cells/donor). F. Pretreatment with artemin (ARTN, 100ng/ml) did not affect the overall 
proportion of responsive neurons (N=3 donors, 10-42 cells/donor, unpaired t test).  
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We determined the relative distribution of pruritogen- and algogen-responsive neurons in 

our donor pool by calculating the proportion of vehicle-treated cells that responded to a given 

stimulus for each individual hDRG donor (n=6-8 donors) (Figure 6D).  To asses if human 

pruritogen receptors colocalize with TRP channels, we determined the proportion of neurons that 

responded to more than one stimulus (Table 3). Our data demonstrate that 87% of all histamine-

responsive neurons also responded to capsaicin, indicating that most histamine-sensitive 

neurons are also TRPV1-positive. More than half of histamine responders also responded to 

chloroquine, while only a third of chloroquine-sensitive neurons responded to histamine. and more 

than half also responded to chloroquine (Table 1). Chloroquine-responsive neurons were largely 

TRPV1-positive (74%), but more than half also responded to mustard oil. Most TRPA1-positive 

neurons responded to chloroquine, but few also responded to histamine or capsaicin. Overnight 

pre-treatment with NGF or artemin did not change the proportion of neurons that responded to 

histamine, chloroquine, mustard oil, or capsaicin (Figure 6E-F). These data indicate that the 

expression of human pruritogen receptors was not significantly affected by growth factor 

treatment, suggesting that the mechanisms behind NTF regulation of itch-sensitive neurons differ 

between mouse and human. 

Table 3. Functionally overlapping subpopulations of human sensory neurons.  

  % Responding to another stimulus 

   Histamine CQ MO Capsaicin 

Total 
responsive 
neurons  

Histamine+   56.00% 27.74% 87.27% 

CQ+ 36.84%   53.85% 73.68% 

MO+ 15.63% 65.62%   36.84% 

Capsaicin+ 40.00% 51.85% 24.14%   

 

RNA sequencing was used to quantify transcripts encoding pruritogen receptors, TRP 

channels, and neurotrophic factor receptors in whole human DRG. Transcriptome data were 

obtained from 5 donors, and confirm the presence of histamine receptor 1 (HRH1) and 2 (HRH2) 

transcripts, but none of the subtypes 3 and 4 (HRH3, HRH4) (Figure 7). Sequencing data further 

demonstrate the presence of MRGPRX1, the putative ortholog of the mouse MrgprA3/C11 
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pruritogen receptors. Interestingly, there was also a considerable amount of MRGPRX3 

transcripts detected, however, very little is known currently about the physiological role of 

MRGPRX3. Despite the high proportion of capsaicin-responsive neurons identified in our 

functional studies, TRPV1 transcript levels in whole DRG tissue were surprisingly low. TRPA1 

RNA was clearly detectable, though levels were not as high as the pruritogen receptor levels.  

Transcripts for the neurotrophic factor receptors TrkA (NTRK1) and Ret were detected, in addition 

to the GFRα 1-3 co-receptors. Consistent with prior mouse studies which demonstrate no role for 

persephin-GFRα4 signaling in sensory neurons, RNA sequencing found no GFRα4 transcripts in 

human DRG.  

 

Figure 7. Expression of pruritogen receptors, TRP channels, and growth factor receptor 
transcripts in hDRG.  RPKM values were averaged across individual donors (N=5). Data are 
presented as mean ± s.e.m.  
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Discussion 

 Several recent studies have identified species differences and validated molecular 

mechanisms using human sensory neurons, but few have provided a detailed description of 

extraction or culturing methodologies [13-16]. Here, we provide a detailed surgical extraction 

protocol for post-mortem access to human dorsal root ganglia (hDRG) immediately after organ 

procurement from consented donors. We demonstrate a culturing protocol that yields primary 

neurons that are amenable to a variety of functional approaches. In addition, we demonstrate that 

maintaining adult sensory neurons in culture without growth factors did not have a significant 

effect on their basic electrophysiological properties. We then demonstrate the distribution of 

pruriceptive and nociceptive populations in human DRG did not change in the presence of NGF 

or artemin. Future applications of this protocol have the potential to significantly impact our 

understanding of human neurophysiology and provide a platform for better translational studies 

of itch and pain mechanisms.  

 The extraction protocol we present here addresses several key issues that organ 

procurement organizations (OPOs) are likely to be concerned with when negotiating a research 

collaboration.  The ventral surgical approach through the abdominal cavity eliminates the need to 

move the donor during the procedure and preserves structural integrity of the body, thus 

significantly reducing post-mortem interval for DRG retrieval and resulting in minimal interference 

with other surgical procedures. Maintaining a sterile intraoperative field during the extraction 

allows subsequent tissue procurement of bone and skin, ensuring maximal utilization of donor 

tissues by the OPO. Importantly, this approach maintains the overall integrity of the donor body 

for funeral purposes, allowing access to all who consent to tissue donation for research without 

being restricted to donors who opt for cremation. 

Recent publications indicate that it may also be possible to culture human sensory 

neurons in the presence of other types of culture media [13, 14, 16]. Investigators may decide to 

incorporate the same enzymatic digestion, plating protocol, or culture media they have previously 
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used in animal model studies if the goal is to make direct comparisons to those prior studies. In 

such cases, this protocol can provide a positive control to confirm the viability of neurons as 

investigators adopt the extraction and dissection procedures in their own laboratories. Notable 

differences between our protocol and those previously described include the specific types of 

enzymes used (papain versus trypsin and DNase [13], or proprietary enzyme mixture [14, 16]) 

and the duration of enzymatic digestion (up to 3.5 hours in some studies). The type of culture 

medium and use of neurotrophic factors has also varied between studies, with several utilizing 

DMEM/F12-based media and all studies supplementing with varying concentrations of NGF 

and/or GDNF.  The successful culturing of human cells in a variety of different culture media and 

following different digestion methodologies suggests that individual labs may be able to adapt this 

protocol. Producing viable cultures of adult human sensory neurons using conditions similar to 

those used in previous studies of rodent neurons should reduce sources of variation and allow for 

more direct comparison between rodent and human sensory neurons.  

Previous studies demonstrate that NGF and artemin are increased in the lesional skin of 

patients with pruritic diseases [39-44]. In addition, in chapter 4, we demonstrated that NGF and 

artemin can increase the proportion of histamine- and chlorquine-sensitive neurons. To determine 

if the same mechanism exists in human sensory neurons, we tested neuronal calcium responses 

to pruritogens and algogens after incubation with NGF or artemin. Our data demonstrate that 

overnight pre-treatment with either NTF did not alter the proportion of histamine- or chloroquine-

responsive neurons. There was also no change in the proportion of capsaicin and mustard oil 

responders. Several factors may contribute to the observed differences between mouse and 

human responses to NTF treatment. The time spent in culture is longer in human experiments 

because it was necessary to wait for the glial cells to expose the plasma membrane of neurons 

to allow reliable calcium imaging recordings. Time in culture can be associated with transcriptional 

changes that could be a major contributor to the observed differences between mouse and human 

neurons. Future studies can address this by recording responses in mouse neurons that were 
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maintained in culture for longer. Alternatively, our results may simply indicate that human and 

mouse pruriceptive neurons are not modulated by NGF and artemin via the same mechanisms.  

Sequencing data from whole DRG tissue obtained from the same donors that provided 

neurons for functional studies confirm the presence of pruritogen and neurotrophic growth factor 

receptors. The detection of MRGPRX1 transcripts in hDRG and direct activation of sensory 

neurons by chloroquine strongly suggest a functional role for MRGPRX1 in human sensory 

neuron physiology. Despite activation by the same group of agonists, MRGPRX1 is not a true 

ortholog of the mouse MrgprA3 or MrgprC11 receptors. In heterologous systems, these receptors 

may engage different downstream mechanisms such as activation of different TRP channels 

(TRPV1 versus TRPA1) [23]. These fundamental differences in receptor signaling may contribute 

to the differences we observed in NTF responses of mouse versus human chloroquine-sensitive 

neurons.  

To our knowledge, this study is the first to apply ratiometric calcium imaging in dissociated 

human DRG cultures to characterize the human subpopulations that respond to pruritogens. The 

proportion of pruritogen- and algogen-responsive sensory neurons varied across donors, with 

histamine- and chloroquine-responsive neurons encompassing a larger proportion than what is 

generally reported in rodents. Most pruriceptive neurons responded to capsaicin, suggesting the 

possibility of a functional link between pruriceptor GPCR signaling and TRPV1. Future studies 

utilizing pharmacological interventions such as QX-314 and TRPV1 antagonists could directly test 

this hypothesis. The specific culturing protocol we have described can produce live adult sensory 

neurons that are amenable to physiological and biochemical measures and are similar to those 

studied in our previous publications [16, 19]. Dissociated cultures of human sensory neurons are 

a valuable resource that enables the precise manipulation of external factors to study neuronal 

physiology specific to humans and can strengthen future studies of itch and pain mechanisms.   
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Chapter 6 

Conclusions and Future Directions 
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 The work presented in this dissertation applies a multifaceted approach to address key 

questions about the molecular mechanisms that underlie the neurobiology of acute and chronic 

itch. In chapter 2, we utilized global genetic knock outs and acute pharmacological inhibition to 

characterize the contribution of PKCδ to acute histamine-induced itch. We applied the AEW model 

of dry skin itch to investigate the anatomical and functional changes associated with persistent 

itch in chapter 3. Our work identified the specific subset of Ret-positive fibers as likely contributors 

to dry skin-induced pruritus. In chapter 4 we investigated the effects of neurotrophic factors on 

pruriceptive responses, and found distinct roles for NGF and artemin the sensitization of 

histamine-dependent and -independent itch. Finally, in chapter 5 we demonstrated a novel 

method for the extraction and successful culturing of human sensory neurons, allowing us to 

perform the first studies to functionally characterize the pruriceptive subpopulations in humans.  

 

PKCδ as an intracellular mediator of itch 

In chapter 2, we investigated the role of the specific PKC isoform PKCδ in acute 

pruritogen-induced itch. Our studies indicate that PKCδ contributes to histamine-evoked 

scratching behavior, but may be dispensable for non-histaminergic itch induced by the pruritogens 

chloroquine and β-alanine. In the peripheral nervous system, PKCδ expression was restricted to 

small diameter sensory neurons, and was found in both peptidergic and nonpeptidergic neurons. 

Physiological studies of cultured adult DRG using genetic and pharmacological tools demonstrate 

that PKCδ mediates histamine-induced responses of sensory neurons. In addition, PKCδ may act 

downstream of the histamine receptor to modulate TRPV1 activity, as there was a significant 

reduction in capsaicin responses after histamine application. We conclude that PKCδ is involved 

in the sensory neuron responses that mediate acute histaminergic itch.   

Several questions remain about the precise role of PKCδ in histamine-induced itch. First, 

it is not clear whether PKCδ is engaged directly downstream of histamine receptor signaling or if 

it plays a more constant modulatory role in modulating or engaging downstream effector proteins 
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such as TRPV1. Future studies could determine if PKCδ is engaged downstream of histamine 

receptor activation by studying PKCδ translocation to the membrane. This assay has been 

validated previously, and can be further strengthened by the use of a PKCδ-KO-validated 

antibody [1]. The lack of reliable histamine receptor antibody availability can be overcome by 

combining calcium imaging measurements to identify histamine-responsive neurons with 

immunocytochemistry to probe for PKCδ translocation at specific time points after histamine 

activation. 

Previous findings from our lab showed that PKCδ deletion had no effect on acute pain, 

but significantly reduced CFA-induced inflammatory heat hyperalgesia, suggesting a potential 

function for PKCδ in nociceptor sensitization [2]. The expression of PKCδ in half of TRPV1-

positive neurons certainly suggests that it could be a modulator of TRPV1 expression or function. 

In addition, PKCδ may be involved downstream of PGE2, NGF, and IL-6 signaling [3-6]. Indeed, 

NGF-induced ERK phosphorylation was inhibited by the PKCδ pharmacological inhibitor rottlerin 

[5]. PKCδ has also been implicated in sickle cell-associated pain, paclitaxel-induced hyperalgesia, 

and NGF-TrkA induced axon growth in osteoarthritis [7-9]. Future studies could investigate 

whether there is indeed a functional link between PKCδ and inflammation-induced sensitization 

of TRPV1. Furthermore, PKCδ deletion could be tested in the context of inflammatory itch models 

such as dry skin and allergic contact dermatitis.  

Our studies demonstrate that despite a significant reduction in histamine-evoked itch, 

histamine responses were not completely inhibited, indicating that a substantial number of 

histamine-responsive neurons remain functional. This suggests other PKCδ-independent 

mechanisms also contribute to the signaling of histaminergic itch. These findings support the idea 

that the histamine-responsive population of sensory neurons is a heterogeneous group of cells, 

and distinct mechanisms may mediate downstream activation of histamine-dependent signaling 

cascades. This may be further reflected by the involvement of several histamine receptor 

subtypes, including H4R, whose role in histamine-induced itch is not clearly defined yet.  
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PKC activation is a key step in numerous signaling cascades, and several PKC isoforms 

have been identified in sensory neurons. However, isoform-specific effects on itch and pain 

remain poorly understood. A number of recent studies demonstrate inflammatory pain is mediated 

by PKCε, but this is one of the first studies to address the role of a specific PKC isoform in itch 

[10-19]. Ultimately, because of their extensive expression throughout the body, pharmacological 

inhibition of PKC isoforms may not provide an optimal approach to treating chronic pain or itch. 

However, by further dissecting the specific pathways associated with these kinases, we may be 

able to identify a downstream target that is more specific and amenable to clinical translation.  

 

Pruriceptor changes associated with models of chronic itch 

The work presented in chapter 3 demonstrates the specific anatomical and functional 

changes that are associated with a model of dry skin itch. Dry skin treatment resulted in a 

significant increase in scratching, but not wiping behavior, indicating that it elicits an itch-specific 

phenotype. The resulting intraepidermal hyperinnervation was independent of scratching, and 

included mostly Ret-positive non-peptidergic fibers. Interestingly, there were no changes in basic 

membrane excitability properties of trigeminal neurons that innervated the treated skin. However, 

there was an increase in the proportion of chloroquine-responsive trigeminal neurons, indicating 

de novo expression of pruritogen receptors resulting in an expansion of the pruritic subpopulation 

of sensory neurons.   

The acetone-ether-water (AEW) model is widely used as a model of chronic itch, because 

it shares several key characteristics with pruritic skin conditions. The skin changes observed in 

this model include epidermal hyperplasia, parakeratosis, and spongiosis, which are also 

frequently observed in the lesional skin of patients with atopic dermatitis and psoriasis. Barrier 

dysfunction is another key feature of this model that is also associated with pruritic skin diseases 

[20]. However, like xerosis in humans, the dry skin model is not marked by inflammatory 

infiltration, which is a common feature in most chronic itch conditions. A major question remains 
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regarding whether Ret+ fibers are also mediators of inflammatory itch. Inflammatory models of 

chronic itch include ovalbumin hypersensitivity resembling allergic itch, MC903/Vitamin D3 analog 

treatment which results in an atopic dermatitis-like phenotype, and trinitrochlorobenzene-induced 

contact dermatitis [21]. Future studies can utilize existing reporter lines such as RetEGFP or 

MrgprA3-TdTomato, to examine changes in pruritogen receptor expression and physiology under 

different types of inflammatory itch. These models may also allow a more chronic time scale to 

be applied, in order to determine the effects of long-term itch (>1-2 weeks) on pruriceptor plasticity 

and innervation. Identifying the distinct mechanisms or subpopulations of pruriceptors that 

mediate distinct types of itch could greatly aid in the development of more specific treatments by 

minimizing the side effects that frequently result from systemic immunomodulatory treatments.  

The “itch-scratch cycle” in chronic pruritic conditions is a vicious loop that results in further 

inflammation and damage to the skin, thereby eliciting even more itch, anxiety, and frustration in 

patients.  The use of Elizabethan collars allowed us to block the pro-inflammatory effects of 

scratching in order to determine the intrinsic changes that result from the induction of dry skin. 

Interestingly, epidermal hyperplasia and hyperinnervation still occurred, despite lack of 

mechanical stimulation and injury at the skin. This suggests that transepidermal water loss directly 

contributes to the pathological changes observed in the dry skin model, and it is these epidermal 

changes that likely drive the anatomical and functional effects associated with dry skin itch.  

 

Neurotrophic factors and their effects on itch 

In chapter 4, we examined the direct effects of neurotrophic factors on itch sensation and 

pruriceptor physiology. We found that acutely administered neurotrophic factors do not induce 

spontaneous itch or pain. Nerve growth factor (NGF) pretreatment selectively potentiated 

histamine-induced itch, but did not affect chloroquine-evoked scratching responses. On the other 

hand, artemin pretreatment potentiated chloroquine-induced itch, but appeared to inhibit 

histamine responses. Our data suggest distinct roles for NGF and artemin in the modulation of 
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histamine-dependent and histamine-independent itch. To further examine the mechanisms by 

which these growth factors sensitized pruritogen-induced itch, we tested the effects of NGF and 

artemin on histamine- and chloroquine- induced calcium responses. Acute 1-hour pre-treatment 

with NGF did not affect the proportion of histamine-responsive neurons. On the other hand, 

prolonged overnight incubation significantly increased the proportion of histamine responders, 

indicating that NGF likely induces de novo expression of histamine receptors in sensory neurons. 

Artemin increased the proportion of chloroquine-responsive neurons after both acute and 

overnight pre-treatment. These results indicate that neurotrophic growth factors can sensitize itch 

responses by upregulating the expression of pruritogen receptors via different mechanisms. 

Further studies are needed to determine the effects of artemin on histamine responses. 

Neurotrophic growth factors have long been studied as modulators of pain and several findings 

indicate NGF and artemin can directly sensitize TRPV1 function and upregulate its expression. 

Future studies can further dissect the downstream pathways underlying NGF- and artemin-

induced sensitization of itch [22]. A better understanding of NTF modulation of pruriceptive 

responses will ultimately further our understanding of the distinct neurbiological mechanisms that 

mediate itch versus pain.  

A second major concept addressed in the studies presented in Chapter 4 is the role of 

endogenous growth factor signaling in the maintenance of pruriceptors. In characterizing the 

TrkAF592A mutant, we determined that this single point mutation most likely results in aberrant TrkA 

receptor function. TrkAF592A mutants share several characteristics with TrkA/NGF knock-out 

phenotypes, including significant hypoalgesia and profound loss of peptidergic intraepidermal 

fiber innervation [23-26]. However, unlike the full loss of NGF/TrkA signaling, TrkAF592A animals 

survived well into adulthood and appeared to be less severely affected. This suggests that the 

TrkAF592A receptor is most likely hypomorphic, with enough residual function to support the 

survival of some sensory neurons. Perhaps the most interesting finding from this study is the lack 

of physiological effect on pruritogen-evoked scratching. In addition, calcium imaging studies 
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demonstrate histamine- and chloroquine-sensitive neurons are still present in TrkAF592A mutants. 

These results suggest that pruriceptor innervation and receptor expression may not be fully 

dependent on TrkA/NGF signaling. Further studies are needed to fully characterize which sensory 

populations are lost in order to begin to understand the loss of function in the TrkAF592A receptor. 

This study raises another interesting question regarding the dual expression of 

neurotrophic factor receptors in itch-sensitive neurons. If TrkA signaling is not important for the 

maintenance of pruriceptive neurons, the next obvious candidate is the receptor tyrosine kinase 

Ret, which regulates non-peptidergic neurons. Most Mrgpr family of receptors express Ret [27], 

and the MrgprA3-positive subset of pruriceptors is marked by the expression of both TrkA and 

Ret [28, 29]. Future studies can conditionally delete Ret in sensory neurons either acutely or 

during development [30], by taking advantage of the numerous available Cre-recombinase lines. 

A more specific role in pruriceptor function could be addressed by deleting Ret in MrgprA3-

positive neurons under the control of MrgprA3-Cre [28]. Furthermore, Ret deletion could be 

combined with TrkA deletion (TrkAF592A animals also harbor LoxP sites at the TrkA locus), to avoid 

neurotrophic factor receptor redundancy or compensation. The GFRα-GFL complex associates 

with Ret to induce phosphorylation of key Ret tyrosine residues, which then serve as docking sites 

for adaptor proteins such as Src, PLCγ, and Shc to activate downstream signaling cascades 

including the PI3K and MAPK [31]. Specific Ret tyrosine mutants could be studied to delineate 

whether specific downstream signaling mechanisms are involved in the maintenance versus 

sensitization of pruriceptor populations [32].  

 The work presented in chapter 4 addressed the effects of acutely applied neurotrophic 

growth factors on histamine- and chloroquine-induced itch. However, as mentioned previously, 

there are a number of other acute and chronic itch models that can be applied in order to study 

the role of neurotrophic factors and their receptors in the development or maintenance of chronic 

pruritus [21]. Understanding the effects of neurotrophic factors on neurophysiology is becoming 

an even more pressing issue as clinical trials using growth factors or growth factor-modulating 
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compounds are well underway for the treatment of a number of diseases, including sciatica, 

osteoarthritis, and Parkinson’s disease [33-38]. It is critical that we understand the wide range of 

effects of neurotrophic factors in order to inform future studies of the potential for clinically relevant 

adverse effects of new therapies.  

 

Human sensory neurons: a key step toward translation 

In chapter 5, we described a protocol we developed for the surgical extraction of human 

dorsal root ganglia (hDRG) from deceased organ donors. By applying a few key modifications to 

our mouse sensory neuron culturing protocol, we were able to dissociate and successfully culture 

adult human sensory neurons. These neurons could be maintained in culture for over 10 days 

and were amenable to several approaches including immunocytochemistry, RNA sequencing, 

and even patch-clamp electrophysiology and calcium imaging. The work on this project 

contributes tremendously to the field of pain and itch, by providing investigators with the means 

to generate human primary sensory neuron cultures. Many research institutions are located within 

or affiliated with a local medical center, where organ donation and transplantation takes place on 

a frequent basis. By providing a clear road map for the extraction process, other researchers 

could establish their own collaborations with local organ procurement organizations that will grant 

them access to donor tissue donated for research. Expanding preclinical access to human tissues 

has the potential to greatly improve the translation of preclinical findings into clinically effective 

treatments. Furthermore, the validation of key findings in target tissues will save tremendous 

amounts time and money.  

 Once we established that culturing without growth factors did not affect the basic 

electrophysiological properties of human neurons, we proceeded to determine whether we could 

observe the same effects of NGF and artemin on pruritogen-induced responses in vitro. Very few 

studies have been able to study functional responses of human sensory neurons, and to our 

knowledge, this is one of the first to characterize the human pruriceptive populations of cultured 
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hDRG [39-46]. Our findings demonstrate the proportion of histamine-, chloroquine-, mustard oil-, 

and capsaicin-responsive neurons and characterize the degree of overlap between these 

functional receptors. The application of NGF and artemin did not change the overall proportion of 

responsive human neurons, which contrasts with our observations in mouse neurons in chapter 

4. It is possible that the mechanisms of pruriceptor sensitization by neurotrophic factors are 

fundamentally different between species. However, it is also possible that there are inherent 

differences between the cultures due to the absolute age of human versus mouse neurons or the 

difference in time in vitro prior to recording secondary to the significant glial encapsulation of 

human neurons.  

 The protocol we have established for extraction and culturing of human DRG has opened 

the door to a number of exciting clinically relevant future studies and has resulted in several 

collaborations with research groups across the country. The extraction procedure itself has 

allowed us to also obtain spinal cord and intervertebral disc tissue. Future studies can begin to 

address key questions about the sensitization of nociceptors by intervertebral disc tissue, which 

can secrete pro-inflammatory cytokines and growth factors that are implicated in chronic low back 

pain. Spinal cord tissue can be used to investigate the sensory neuron inputs into the dorsal horn 

while serving as a model for studying synaptic transmission in humans.  

We have only begun to characterize the physiology of human sensory neurons. Future 

studies can start to validate or discover mechanisms behind sensory neuron sensitization by 

direct treatment with growth factors or other clinically relevant inflammatory compounds [46]. Co-

cultures using peripheral tissues such as keratinocytes can be used to build in vitro models of 

disease states to investigate the interactions between sensory neurons and their target tissues. 

Furthermore, advances in RNA sequencing technologies could allow for the full genomic 

characterization of the heterogeneous subsets of sensory neurons in human and determine how 

they differ from model organisms [29]. Transcriptome sequencing techniques can be combined 

with functional approaches such as calcium imaging and patch-clamp electrophysiology to identify 
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the transcriptional profiles of functionally-identified subsets of neurons. In conclusion, access to 

human neurons provides a vast number of opportunities to study normal and pathological neural 

processing, and will be an invaluable tool for the validation and generation of novel treatments.  
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